Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 68
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Božič
1
70 kgStrgar
15
62 kgKvasina
21
72 kgBrajkovič
26
60 kgLampater
30
75 kgTeutenberg
34
66 kgEibegger
35
68 kgKocjan
37
72 kgCarlström
41
70 kgLjungblad
42
70 kgMahorič
43
68 kgBonča
46
63 kgBenetseder
50
65 kgKuschynski
51
65 kgGoesinnen
63
75 kgBole
65
69 kgLiese
77
75 kgPichler
91
70 kgMol
93
83 kgBengsch
104
85 kgJovanović
106
60 kg
1
70 kgStrgar
15
62 kgKvasina
21
72 kgBrajkovič
26
60 kgLampater
30
75 kgTeutenberg
34
66 kgEibegger
35
68 kgKocjan
37
72 kgCarlström
41
70 kgLjungblad
42
70 kgMahorič
43
68 kgBonča
46
63 kgBenetseder
50
65 kgKuschynski
51
65 kgGoesinnen
63
75 kgBole
65
69 kgLiese
77
75 kgPichler
91
70 kgMol
93
83 kgBengsch
104
85 kgJovanović
106
60 kg
Weight (KG) →
Result →
85
60
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | BOŽIČ Borut | 70 |
15 | STRGAR Matic | 62 |
21 | KVASINA Matija | 72 |
26 | BRAJKOVIČ Janez | 60 |
30 | LAMPATER Leif | 75 |
34 | TEUTENBERG Sven | 66 |
35 | EIBEGGER Markus | 68 |
37 | KOCJAN Jure | 72 |
41 | CARLSTRÖM Kjell | 70 |
42 | LJUNGBLAD Jonas | 70 |
43 | MAHORIČ Mitja | 68 |
46 | BONČA Valter | 63 |
50 | BENETSEDER Josef | 65 |
51 | KUSCHYNSKI Aleksandr | 65 |
63 | GOESINNEN Floris | 75 |
65 | BOLE Grega | 69 |
77 | LIESE Thomas | 75 |
91 | PICHLER Michael | 70 |
93 | MOL Wouter | 83 |
104 | BENGSCH Robert | 85 |
106 | JOVANOVIĆ Nebojša | 60 |