Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Rogina
1
70 kgOspina
2
62 kgRoglič
3
65 kgDe Vreese
4
78 kgSinkewitz
5
63 kgParrinello
6
68 kgPolanc
7
62 kgSulzberger
9
65 kgMugerli
10
68 kgArmée
11
72 kgFailli
12
65 kgValjavec
13
59 kgPibernik
14
60 kgDeclercq
15
78 kgAtapuma
16
59 kgFinetto
18
62 kgTaborre
19
66 kgPasqualon
20
75 kgŠtimulak
21
64 kgKochetkov
23
70 kg
1
70 kgOspina
2
62 kgRoglič
3
65 kgDe Vreese
4
78 kgSinkewitz
5
63 kgParrinello
6
68 kgPolanc
7
62 kgSulzberger
9
65 kgMugerli
10
68 kgArmée
11
72 kgFailli
12
65 kgValjavec
13
59 kgPibernik
14
60 kgDeclercq
15
78 kgAtapuma
16
59 kgFinetto
18
62 kgTaborre
19
66 kgPasqualon
20
75 kgŠtimulak
21
64 kgKochetkov
23
70 kg
Weight (KG) →
Result →
78
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | ROGINA Radoslav | 70 |
2 | OSPINA Dalivier | 62 |
3 | ROGLIČ Primož | 65 |
4 | DE VREESE Laurens | 78 |
5 | SINKEWITZ Patrik | 63 |
6 | PARRINELLO Antonino | 68 |
7 | POLANC Jan | 62 |
9 | SULZBERGER Wesley | 65 |
10 | MUGERLI Matej | 68 |
11 | ARMÉE Sander | 72 |
12 | FAILLI Francesco | 65 |
13 | VALJAVEC Tadej | 59 |
14 | PIBERNIK Luka | 60 |
15 | DECLERCQ Tim | 78 |
16 | ATAPUMA Darwin | 59 |
18 | FINETTO Mauro | 62 |
19 | TABORRE Fabio | 66 |
20 | PASQUALON Andrea | 75 |
21 | ŠTIMULAK Klemen | 64 |
23 | KOCHETKOV Pavel | 70 |