Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
de Jongh
1
76 kgBlijlevens
3
70 kgMagnusson
4
70 kgBäckstedt
5
94 kgLafis
6
78 kgLjungqvist
7
73 kgPetacchi
8
70 kgKnaven
9
68 kgRittsel
10
70 kgHushovd
12
83 kgAndersson
13
71 kgHolm Sørensen
16
77 kgVestøl
18
85 kgTanner
23
70 kgKarlsson
25
75 kgRasch
29
72 kgGrabsch
30
78 kgAndriotto
34
68 kgGrabsch
36
81 kgStrazzer
39
68 kgCarlström
41
70 kg
1
76 kgBlijlevens
3
70 kgMagnusson
4
70 kgBäckstedt
5
94 kgLafis
6
78 kgLjungqvist
7
73 kgPetacchi
8
70 kgKnaven
9
68 kgRittsel
10
70 kgHushovd
12
83 kgAndersson
13
71 kgHolm Sørensen
16
77 kgVestøl
18
85 kgTanner
23
70 kgKarlsson
25
75 kgRasch
29
72 kgGrabsch
30
78 kgAndriotto
34
68 kgGrabsch
36
81 kgStrazzer
39
68 kgCarlström
41
70 kg
Weight (KG) →
Result →
94
68
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | DE JONGH Steven | 76 |
3 | BLIJLEVENS Jeroen | 70 |
4 | MAGNUSSON Glenn | 70 |
5 | BÄCKSTEDT Magnus | 94 |
6 | LAFIS Michel | 78 |
7 | LJUNGQVIST Marcus | 73 |
8 | PETACCHI Alessandro | 70 |
9 | KNAVEN Servais | 68 |
10 | RITTSEL Martin | 70 |
12 | HUSHOVD Thor | 83 |
13 | ANDERSSON Michael | 71 |
16 | HOLM SØRENSEN Brian | 77 |
18 | VESTØL Bjørnar | 85 |
23 | TANNER John | 70 |
25 | KARLSSON Jan | 75 |
29 | RASCH Gabriel | 72 |
30 | GRABSCH Bert | 78 |
34 | ANDRIOTTO Dario | 68 |
36 | GRABSCH Ralf | 81 |
39 | STRAZZER Massimo | 68 |
41 | CARLSTRÖM Kjell | 70 |