Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Blijlevens
1
70 kgStrazzer
2
68 kgde Jongh
5
76 kgHondo
6
73 kgPetacchi
7
70 kgKnaven
12
68 kgBäckstedt
13
94 kgHushovd
14
83 kgLjungqvist
15
73 kgPollack
17
77 kgGrabsch
18
78 kgHvastija
19
75 kgHolm Sørensen
24
77 kgMagnusson
25
70 kgRasch
26
72 kgLafis
30
78 kgCarlström
31
70 kgTanner
33
70 kgAndersson
37
71 kgRittsel
39
70 kgGrabsch
40
81 kgGlasner
48
72 kgStenersen
49
70 kg
1
70 kgStrazzer
2
68 kgde Jongh
5
76 kgHondo
6
73 kgPetacchi
7
70 kgKnaven
12
68 kgBäckstedt
13
94 kgHushovd
14
83 kgLjungqvist
15
73 kgPollack
17
77 kgGrabsch
18
78 kgHvastija
19
75 kgHolm Sørensen
24
77 kgMagnusson
25
70 kgRasch
26
72 kgLafis
30
78 kgCarlström
31
70 kgTanner
33
70 kgAndersson
37
71 kgRittsel
39
70 kgGrabsch
40
81 kgGlasner
48
72 kgStenersen
49
70 kg
Weight (KG) →
Result →
94
68
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | BLIJLEVENS Jeroen | 70 |
2 | STRAZZER Massimo | 68 |
5 | DE JONGH Steven | 76 |
6 | HONDO Danilo | 73 |
7 | PETACCHI Alessandro | 70 |
12 | KNAVEN Servais | 68 |
13 | BÄCKSTEDT Magnus | 94 |
14 | HUSHOVD Thor | 83 |
15 | LJUNGQVIST Marcus | 73 |
17 | POLLACK Olaf | 77 |
18 | GRABSCH Bert | 78 |
19 | HVASTIJA Martin | 75 |
24 | HOLM SØRENSEN Brian | 77 |
25 | MAGNUSSON Glenn | 70 |
26 | RASCH Gabriel | 72 |
30 | LAFIS Michel | 78 |
31 | CARLSTRÖM Kjell | 70 |
33 | TANNER John | 70 |
37 | ANDERSSON Michael | 71 |
39 | RITTSEL Martin | 70 |
40 | GRABSCH Ralf | 81 |
48 | GLASNER Björn | 72 |
49 | STENERSEN Bjørn | 70 |