Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Strazzer
1
68 kgHondo
2
73 kgMagnusson
3
70 kgPetacchi
5
70 kgde Jongh
9
76 kgHolm Sørensen
10
77 kgHushovd
12
83 kgLjungqvist
16
73 kgGrabsch
17
78 kgKnaven
19
68 kgRittsel
20
70 kgRasch
23
72 kgLafis
24
78 kgBäckstedt
27
94 kgTanner
28
70 kgStenersen
33
70 kgAndersson
34
71 kgKarlsson
36
75 kgHvastija
40
75 kgCarlström
44
70 kgMüller
49
79 kg
1
68 kgHondo
2
73 kgMagnusson
3
70 kgPetacchi
5
70 kgde Jongh
9
76 kgHolm Sørensen
10
77 kgHushovd
12
83 kgLjungqvist
16
73 kgGrabsch
17
78 kgKnaven
19
68 kgRittsel
20
70 kgRasch
23
72 kgLafis
24
78 kgBäckstedt
27
94 kgTanner
28
70 kgStenersen
33
70 kgAndersson
34
71 kgKarlsson
36
75 kgHvastija
40
75 kgCarlström
44
70 kgMüller
49
79 kg
Weight (KG) →
Result →
94
68
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | STRAZZER Massimo | 68 |
2 | HONDO Danilo | 73 |
3 | MAGNUSSON Glenn | 70 |
5 | PETACCHI Alessandro | 70 |
9 | DE JONGH Steven | 76 |
10 | HOLM SØRENSEN Brian | 77 |
12 | HUSHOVD Thor | 83 |
16 | LJUNGQVIST Marcus | 73 |
17 | GRABSCH Bert | 78 |
19 | KNAVEN Servais | 68 |
20 | RITTSEL Martin | 70 |
23 | RASCH Gabriel | 72 |
24 | LAFIS Michel | 78 |
27 | BÄCKSTEDT Magnus | 94 |
28 | TANNER John | 70 |
33 | STENERSEN Bjørn | 70 |
34 | ANDERSSON Michael | 71 |
36 | KARLSSON Jan | 75 |
40 | HVASTIJA Martin | 75 |
44 | CARLSTRÖM Kjell | 70 |
49 | MÜLLER Martin | 79 |