Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 110
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Nechita
1
71 kgTamouridis
1
70 kgČanecký
5
72 kgKvasina
7
72 kgKusztor
8
61 kgEibegger
9
68 kgLovassy
11
71 kgBommel
12
75 kgKers
15
71 kgTopchanyuk
21
65 kgGerganov
24
60 kgde Jonge
27
65 kgZoidl
28
63 kgVasylyuk
29
65 kgMarin
31
67 kgRabitsch
34
69 kgGyurov
37
75 kgde la Parte
39
64 kgHristov
40
57 kgMalaguti
41
67 kgJovanović
49
60 kgCholakov
51
66 kgSchiewer
57
70 kg
1
71 kgTamouridis
1
70 kgČanecký
5
72 kgKvasina
7
72 kgKusztor
8
61 kgEibegger
9
68 kgLovassy
11
71 kgBommel
12
75 kgKers
15
71 kgTopchanyuk
21
65 kgGerganov
24
60 kgde Jonge
27
65 kgZoidl
28
63 kgVasylyuk
29
65 kgMarin
31
67 kgRabitsch
34
69 kgGyurov
37
75 kgde la Parte
39
64 kgHristov
40
57 kgMalaguti
41
67 kgJovanović
49
60 kgCholakov
51
66 kgSchiewer
57
70 kg
Weight (KG) →
Result →
75
57
1
57
# | Rider | Weight (KG) |
---|---|---|
1 | NECHITA Andrei | 71 |
1 | TAMOURIDIS Ioannis | 70 |
5 | ČANECKÝ Marek | 72 |
7 | KVASINA Matija | 72 |
8 | KUSZTOR Péter | 61 |
9 | EIBEGGER Markus | 68 |
11 | LOVASSY Krisztián | 71 |
12 | BOMMEL Henning | 75 |
15 | KERS Koos Jeroen | 71 |
21 | TOPCHANYUK Artem | 65 |
24 | GERGANOV Evgeni | 60 |
27 | DE JONGE Maarten | 65 |
28 | ZOIDL Riccardo | 63 |
29 | VASYLYUK Andriy | 65 |
31 | MARIN Matej | 67 |
34 | RABITSCH Stephan | 69 |
37 | GYUROV Spas | 75 |
39 | DE LA PARTE Víctor | 64 |
40 | HRISTOV Stefan Koychev | 57 |
41 | MALAGUTI Alessandro | 67 |
49 | JOVANOVIĆ Nebojša | 60 |
51 | CHOLAKOV Stanimir | 66 |
57 | SCHIEWER Franz | 70 |