Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 93
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Evrard
3
65 kgKusztor
4
61 kgNechita
5
71 kgButs
7
68 kgHristov
8
57 kgGerganov
9
60 kgDufrasne
11
70 kgStassen
12
66 kgPolazzi
14
63 kgTanovițchii
18
73 kgBerdos
22
68 kgDernies
27
68 kgKvachuk
28
68 kgDemoitié
30
69 kgStević
37
66 kgKasa
38
72 kgBalkan
39
64 kgLovassy
40
71 kgKüçükbay
42
70 kgSamli
51
75 kg
3
65 kgKusztor
4
61 kgNechita
5
71 kgButs
7
68 kgHristov
8
57 kgGerganov
9
60 kgDufrasne
11
70 kgStassen
12
66 kgPolazzi
14
63 kgTanovițchii
18
73 kgBerdos
22
68 kgDernies
27
68 kgKvachuk
28
68 kgDemoitié
30
69 kgStević
37
66 kgKasa
38
72 kgBalkan
39
64 kgLovassy
40
71 kgKüçükbay
42
70 kgSamli
51
75 kg
Weight (KG) →
Result →
75
57
3
51
# | Rider | Weight (KG) |
---|---|---|
3 | EVRARD Laurent | 65 |
4 | KUSZTOR Péter | 61 |
5 | NECHITA Andrei | 71 |
7 | BUTS Vitaliy | 68 |
8 | HRISTOV Stefan Koychev | 57 |
9 | GERGANOV Evgeni | 60 |
11 | DUFRASNE Jonathan | 70 |
12 | STASSEN Julien | 66 |
14 | POLAZZI Fabio | 63 |
18 | TANOVIȚCHII Nicolae | 73 |
22 | BERDOS Oleg | 68 |
27 | DERNIES Tom | 68 |
28 | KVACHUK Oleksandr | 68 |
30 | DEMOITIÉ Antoine | 69 |
37 | STEVIĆ Ivan | 66 |
38 | KASA Gabor | 72 |
39 | BALKAN Serkan | 64 |
40 | LOVASSY Krisztián | 71 |
42 | KÜÇÜKBAY Kemal | 70 |
51 | SAMLI Feritcan | 75 |