Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 59
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Polazzi
1
63 kgLovassy
2
71 kgButs
6
68 kgStević
7
66 kgNechita
8
71 kgStassen
10
66 kgDemoitié
12
69 kgGerganov
13
60 kgKusztor
15
61 kgEvrard
16
65 kgDernies
18
68 kgDufrasne
19
70 kgBalkan
26
64 kgHristov
29
57 kgTanovițchii
36
73 kgKasa
37
72 kgBerdos
39
68 kgKvachuk
41
68 kgKüçükbay
49
70 kgSamli
52
75 kg
1
63 kgLovassy
2
71 kgButs
6
68 kgStević
7
66 kgNechita
8
71 kgStassen
10
66 kgDemoitié
12
69 kgGerganov
13
60 kgKusztor
15
61 kgEvrard
16
65 kgDernies
18
68 kgDufrasne
19
70 kgBalkan
26
64 kgHristov
29
57 kgTanovițchii
36
73 kgKasa
37
72 kgBerdos
39
68 kgKvachuk
41
68 kgKüçükbay
49
70 kgSamli
52
75 kg
Weight (KG) →
Result →
75
57
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | POLAZZI Fabio | 63 |
2 | LOVASSY Krisztián | 71 |
6 | BUTS Vitaliy | 68 |
7 | STEVIĆ Ivan | 66 |
8 | NECHITA Andrei | 71 |
10 | STASSEN Julien | 66 |
12 | DEMOITIÉ Antoine | 69 |
13 | GERGANOV Evgeni | 60 |
15 | KUSZTOR Péter | 61 |
16 | EVRARD Laurent | 65 |
18 | DERNIES Tom | 68 |
19 | DUFRASNE Jonathan | 70 |
26 | BALKAN Serkan | 64 |
29 | HRISTOV Stefan Koychev | 57 |
36 | TANOVIȚCHII Nicolae | 73 |
37 | KASA Gabor | 72 |
39 | BERDOS Oleg | 68 |
41 | KVACHUK Oleksandr | 68 |
49 | KÜÇÜKBAY Kemal | 70 |
52 | SAMLI Feritcan | 75 |