Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Berdos
1
68 kgPrevar
3
64 kgHristov
4
57 kgGrosu
6
68 kgVasylyuk
8
65 kgNych
10
74 kgNechita
12
71 kgShushemoin
13
62 kgZemlyakov
16
70 kgHatanaka
19
72 kgIribe
26
61 kgCholakov
27
66 kgKvachuk
29
68 kgBalkan
30
64 kgKrivtsov
32
72 kgKüçükbay
37
70 kgKustadinchev
38
66 kg
1
68 kgPrevar
3
64 kgHristov
4
57 kgGrosu
6
68 kgVasylyuk
8
65 kgNych
10
74 kgNechita
12
71 kgShushemoin
13
62 kgZemlyakov
16
70 kgHatanaka
19
72 kgIribe
26
61 kgCholakov
27
66 kgKvachuk
29
68 kgBalkan
30
64 kgKrivtsov
32
72 kgKüçükbay
37
70 kgKustadinchev
38
66 kg
Weight (KG) →
Result →
74
57
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | BERDOS Oleg | 68 |
3 | PREVAR Oleksandr | 64 |
4 | HRISTOV Stefan Koychev | 57 |
6 | GROSU Eduard-Michael | 68 |
8 | VASYLYUK Andriy | 65 |
10 | NYCH Artem | 74 |
12 | NECHITA Andrei | 71 |
13 | SHUSHEMOIN Alexandr | 62 |
16 | ZEMLYAKOV Oleg | 70 |
19 | HATANAKA Yusuke | 72 |
26 | IRIBE Shotaro | 61 |
27 | CHOLAKOV Stanimir | 66 |
29 | KVACHUK Oleksandr | 68 |
30 | BALKAN Serkan | 64 |
32 | KRIVTSOV Dmytro | 72 |
37 | KÜÇÜKBAY Kemal | 70 |
38 | KUSTADINCHEV Roman | 66 |