Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Țvetcov
1
69 kgGerganov
3
60 kgShushemoin
5
62 kgBizhigitov
6
76 kgHristov
7
57 kgKuschynski
10
65 kgZemlyakov
11
70 kgBazhkou
12
65 kgGidich
24
69 kgPrevar
26
64 kgFurlanski
28
63 kgSchlemmer
29
64 kgPapok
31
76 kgNechita
36
71 kgKüçükbay
37
70 kgJaniaczyk
39
68 kgAndreev
41
63 kgGaleyev
44
68 kgTopchanyuk
47
65 kg
1
69 kgGerganov
3
60 kgShushemoin
5
62 kgBizhigitov
6
76 kgHristov
7
57 kgKuschynski
10
65 kgZemlyakov
11
70 kgBazhkou
12
65 kgGidich
24
69 kgPrevar
26
64 kgFurlanski
28
63 kgSchlemmer
29
64 kgPapok
31
76 kgNechita
36
71 kgKüçükbay
37
70 kgJaniaczyk
39
68 kgAndreev
41
63 kgGaleyev
44
68 kgTopchanyuk
47
65 kg
Weight (KG) →
Result →
76
57
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | ȚVETCOV Serghei | 69 |
3 | GERGANOV Evgeni | 60 |
5 | SHUSHEMOIN Alexandr | 62 |
6 | BIZHIGITOV Zhandos | 76 |
7 | HRISTOV Stefan Koychev | 57 |
10 | KUSCHYNSKI Aleksandr | 65 |
11 | ZEMLYAKOV Oleg | 70 |
12 | BAZHKOU Stanislau | 65 |
24 | GIDICH Yevgeniy | 69 |
26 | PREVAR Oleksandr | 64 |
28 | FURLANSKI Velizar | 63 |
29 | SCHLEMMER Lukas | 64 |
31 | PAPOK Siarhei | 76 |
36 | NECHITA Andrei | 71 |
37 | KÜÇÜKBAY Kemal | 70 |
39 | JANIACZYK Błażej | 68 |
41 | ANDREEV Yordan | 63 |
44 | GALEYEV Vadim | 68 |
47 | TOPCHANYUK Artem | 65 |