Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Aniołkowski
1
68 kgFedorov
2
80 kgKurek
3
80 kgȚvetcov
4
69 kgBanaszek
5
75 kgKubiš
6
70 kgGrosu
7
68 kgFilutás
9
68 kgKrawczyk
12
79 kgZurlo
14
70 kgBaroni
15
63 kgKaczmarek
18
66 kgBanusch
19
78 kgChzhan
21
71 kgPapierski
22
81 kgTaebling
23
77 kgPawlak
24
81 kgNikitin
25
61 kg
1
68 kgFedorov
2
80 kgKurek
3
80 kgȚvetcov
4
69 kgBanaszek
5
75 kgKubiš
6
70 kgGrosu
7
68 kgFilutás
9
68 kgKrawczyk
12
79 kgZurlo
14
70 kgBaroni
15
63 kgKaczmarek
18
66 kgBanusch
19
78 kgChzhan
21
71 kgPapierski
22
81 kgTaebling
23
77 kgPawlak
24
81 kgNikitin
25
61 kg
Weight (KG) →
Result →
81
61
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ANIOŁKOWSKI Stanisław | 68 |
2 | FEDOROV Yevgeniy | 80 |
3 | KUREK Adrian | 80 |
4 | ȚVETCOV Serghei | 69 |
5 | BANASZEK Norbert | 75 |
6 | KUBIŠ Lukáš | 70 |
7 | GROSU Eduard-Michael | 68 |
9 | FILUTÁS Viktor | 68 |
12 | KRAWCZYK Szymon | 79 |
14 | ZURLO Federico | 70 |
15 | BARONI Alessandro | 63 |
18 | KACZMAREK Jakub | 66 |
19 | BANUSCH Richard | 78 |
21 | CHZHAN Igor | 71 |
22 | PAPIERSKI Damian | 81 |
23 | TAEBLING Paul | 77 |
24 | PAWLAK Tobiasz | 81 |
25 | NIKITIN Matvey | 61 |