Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Gonov
1
76 kgKukrle
2
73 kgZoidl
5
63 kgPękala
6
65 kgStojnić
7
73 kgSchwarzbacher
8
72 kgMcDunphy
9
70 kgStolić
12
73 kgRemkhi
14
60 kgNegrente
16
65 kgDirnbauer
17
67 kgRomele
18
71 kgZangerle
19
68 kgRaileanu
22
63 kgGieracki
24
71 kgSchönberger
26
64 kgKoyama
27
68 kg
1
76 kgKukrle
2
73 kgZoidl
5
63 kgPękala
6
65 kgStojnić
7
73 kgSchwarzbacher
8
72 kgMcDunphy
9
70 kgStolić
12
73 kgRemkhi
14
60 kgNegrente
16
65 kgDirnbauer
17
67 kgRomele
18
71 kgZangerle
19
68 kgRaileanu
22
63 kgGieracki
24
71 kgSchönberger
26
64 kgKoyama
27
68 kg
Weight (KG) →
Result →
76
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | GONOV Lev | 76 |
2 | KUKRLE Michael | 73 |
5 | ZOIDL Riccardo | 63 |
6 | PĘKALA Piotr | 65 |
7 | STOJNIĆ Veljko | 73 |
8 | SCHWARZBACHER Matthias | 72 |
9 | MCDUNPHY Conn | 70 |
12 | STOLIĆ Mihajlo | 73 |
14 | REMKHI Rudolf | 60 |
16 | NEGRENTE Mattia | 65 |
17 | DIRNBAUER Josef | 67 |
18 | ROMELE Alessandro | 71 |
19 | ZANGERLE Emanuel | 68 |
22 | RAILEANU Cristian | 63 |
24 | GIERACKI Patryk | 71 |
26 | SCHÖNBERGER Sebastian | 64 |
27 | KOYAMA Tomoya | 68 |