Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.3 * weight + 209
This means that on average for every extra kilogram weight a rider loses -2.3 positions in the result.
Shpilevsky
1
78 kgKemps
2
73 kgKaňkovský
4
83 kgJanorschke
6
78 kgOjavee
9
80 kgKadlec
11
70 kgWong
15
65 kgAlizadeh
24
62 kgMetlushenko
28
82 kgHanson
32
74 kgWu
36
68 kgPeterson
43
67 kgAskari
45
73 kgMcCann
48
73 kgWalker
53
63 kgChan
55
70 kgPidgornyy
56
72 kgKhalmuratov
57
68 kgMizbani
61
67 kgLiu
66
67 kgWang
85
65 kgWang
86
70 kgWilliams
89
75 kgWacker
92
65 kg
1
78 kgKemps
2
73 kgKaňkovský
4
83 kgJanorschke
6
78 kgOjavee
9
80 kgKadlec
11
70 kgWong
15
65 kgAlizadeh
24
62 kgMetlushenko
28
82 kgHanson
32
74 kgWu
36
68 kgPeterson
43
67 kgAskari
45
73 kgMcCann
48
73 kgWalker
53
63 kgChan
55
70 kgPidgornyy
56
72 kgKhalmuratov
57
68 kgMizbani
61
67 kgLiu
66
67 kgWang
85
65 kgWang
86
70 kgWilliams
89
75 kgWacker
92
65 kg
Weight (KG) →
Result →
83
62
1
92
# | Rider | Weight (KG) |
---|---|---|
1 | SHPILEVSKY Boris | 78 |
2 | KEMPS Aaron | 73 |
4 | KAŇKOVSKÝ Alois | 83 |
6 | JANORSCHKE Grischa | 78 |
9 | OJAVEE Mart | 80 |
11 | KADLEC Milan | 70 |
15 | WONG Kam-Po | 65 |
24 | ALIZADEH Hossein | 62 |
28 | METLUSHENKO Yuri | 82 |
32 | HANSON Ken | 74 |
36 | WU Kin San | 68 |
43 | PETERSON Cameron | 67 |
45 | ASKARI Hossein | 73 |
48 | MCCANN David | 73 |
53 | WALKER Johnnie | 63 |
55 | CHAN Chun Hing | 70 |
56 | PIDGORNYY Ruslan | 72 |
57 | KHALMURATOV Muradjan | 68 |
61 | MIZBANI Ghader | 67 |
66 | LIU Biao | 67 |
85 | WANG Zhen | 65 |
86 | WANG Meiyin | 70 |
89 | WILLIAMS Christopher | 75 |
92 | WACKER Eugen | 65 |