Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.4 * weight + 205
This means that on average for every extra kilogram weight a rider loses -2.4 positions in the result.
Kaňkovský
1
83 kgShpilevsky
2
78 kgKemps
3
73 kgJanorschke
5
78 kgWang
10
70 kgMetlushenko
11
82 kgOjavee
13
80 kgKadlec
15
70 kgWalker
19
63 kgHanson
27
74 kgWong
30
65 kgWacker
36
65 kgPeterson
42
67 kgChan
47
70 kgWu
48
68 kgMcCann
50
73 kgAskari
62
73 kgMizbani
65
67 kgKhalmuratov
66
68 kgWilliams
72
75 kgPidgornyy
73
72 kgAlizadeh
75
62 kgLiu
83
67 kg
1
83 kgShpilevsky
2
78 kgKemps
3
73 kgJanorschke
5
78 kgWang
10
70 kgMetlushenko
11
82 kgOjavee
13
80 kgKadlec
15
70 kgWalker
19
63 kgHanson
27
74 kgWong
30
65 kgWacker
36
65 kgPeterson
42
67 kgChan
47
70 kgWu
48
68 kgMcCann
50
73 kgAskari
62
73 kgMizbani
65
67 kgKhalmuratov
66
68 kgWilliams
72
75 kgPidgornyy
73
72 kgAlizadeh
75
62 kgLiu
83
67 kg
Weight (KG) →
Result →
83
62
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | KAŇKOVSKÝ Alois | 83 |
2 | SHPILEVSKY Boris | 78 |
3 | KEMPS Aaron | 73 |
5 | JANORSCHKE Grischa | 78 |
10 | WANG Meiyin | 70 |
11 | METLUSHENKO Yuri | 82 |
13 | OJAVEE Mart | 80 |
15 | KADLEC Milan | 70 |
19 | WALKER Johnnie | 63 |
27 | HANSON Ken | 74 |
30 | WONG Kam-Po | 65 |
36 | WACKER Eugen | 65 |
42 | PETERSON Cameron | 67 |
47 | CHAN Chun Hing | 70 |
48 | WU Kin San | 68 |
50 | MCCANN David | 73 |
62 | ASKARI Hossein | 73 |
65 | MIZBANI Ghader | 67 |
66 | KHALMURATOV Muradjan | 68 |
72 | WILLIAMS Christopher | 75 |
73 | PIDGORNYY Ruslan | 72 |
75 | ALIZADEH Hossein | 62 |
83 | LIU Biao | 67 |