Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.9 * weight + 244
This means that on average for every extra kilogram weight a rider loses -2.9 positions in the result.
Kemps
1
73 kgShpilevsky
3
78 kgKaňkovský
4
83 kgJanorschke
5
78 kgHanson
10
74 kgMetlushenko
11
82 kgOjavee
14
80 kgWalker
18
63 kgKadlec
20
70 kgWang
23
70 kgWu
27
68 kgWilliams
37
75 kgMcCann
52
73 kgChan
55
70 kgWong
56
65 kgAlizadeh
58
62 kgPeterson
61
67 kgWacker
65
65 kgAskari
68
73 kgMizbani
71
67 kgPidgornyy
75
72 kgLiu
79
67 kgKhalmuratov
80
68 kg
1
73 kgShpilevsky
3
78 kgKaňkovský
4
83 kgJanorschke
5
78 kgHanson
10
74 kgMetlushenko
11
82 kgOjavee
14
80 kgWalker
18
63 kgKadlec
20
70 kgWang
23
70 kgWu
27
68 kgWilliams
37
75 kgMcCann
52
73 kgChan
55
70 kgWong
56
65 kgAlizadeh
58
62 kgPeterson
61
67 kgWacker
65
65 kgAskari
68
73 kgMizbani
71
67 kgPidgornyy
75
72 kgLiu
79
67 kgKhalmuratov
80
68 kg
Weight (KG) →
Result →
83
62
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | KEMPS Aaron | 73 |
3 | SHPILEVSKY Boris | 78 |
4 | KAŇKOVSKÝ Alois | 83 |
5 | JANORSCHKE Grischa | 78 |
10 | HANSON Ken | 74 |
11 | METLUSHENKO Yuri | 82 |
14 | OJAVEE Mart | 80 |
18 | WALKER Johnnie | 63 |
20 | KADLEC Milan | 70 |
23 | WANG Meiyin | 70 |
27 | WU Kin San | 68 |
37 | WILLIAMS Christopher | 75 |
52 | MCCANN David | 73 |
55 | CHAN Chun Hing | 70 |
56 | WONG Kam-Po | 65 |
58 | ALIZADEH Hossein | 62 |
61 | PETERSON Cameron | 67 |
65 | WACKER Eugen | 65 |
68 | ASKARI Hossein | 73 |
71 | MIZBANI Ghader | 67 |
75 | PIDGORNYY Ruslan | 72 |
79 | LIU Biao | 67 |
80 | KHALMURATOV Muradjan | 68 |