Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.5 * weight + 292
This means that on average for every extra kilogram weight a rider loses -3.5 positions in the result.
Kaňkovský
1
83 kgShpilevsky
2
78 kgHanson
3
74 kgKemps
4
73 kgJanorschke
6
78 kgOjavee
9
80 kgKadlec
13
70 kgMetlushenko
18
82 kgWang
19
70 kgWu
25
68 kgWilliams
42
75 kgPeterson
43
67 kgAlizadeh
45
62 kgMcCann
53
73 kgWacker
54
65 kgChan
70
70 kgAskari
73
73 kgWong
76
65 kgPidgornyy
80
72 kgWalker
81
63 kgMizbani
82
67 kgKhalmuratov
84
68 kgLiu
87
67 kg
1
83 kgShpilevsky
2
78 kgHanson
3
74 kgKemps
4
73 kgJanorschke
6
78 kgOjavee
9
80 kgKadlec
13
70 kgMetlushenko
18
82 kgWang
19
70 kgWu
25
68 kgWilliams
42
75 kgPeterson
43
67 kgAlizadeh
45
62 kgMcCann
53
73 kgWacker
54
65 kgChan
70
70 kgAskari
73
73 kgWong
76
65 kgPidgornyy
80
72 kgWalker
81
63 kgMizbani
82
67 kgKhalmuratov
84
68 kgLiu
87
67 kg
Weight (KG) →
Result →
83
62
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | KAŇKOVSKÝ Alois | 83 |
2 | SHPILEVSKY Boris | 78 |
3 | HANSON Ken | 74 |
4 | KEMPS Aaron | 73 |
6 | JANORSCHKE Grischa | 78 |
9 | OJAVEE Mart | 80 |
13 | KADLEC Milan | 70 |
18 | METLUSHENKO Yuri | 82 |
19 | WANG Meiyin | 70 |
25 | WU Kin San | 68 |
42 | WILLIAMS Christopher | 75 |
43 | PETERSON Cameron | 67 |
45 | ALIZADEH Hossein | 62 |
53 | MCCANN David | 73 |
54 | WACKER Eugen | 65 |
70 | CHAN Chun Hing | 70 |
73 | ASKARI Hossein | 73 |
76 | WONG Kam-Po | 65 |
80 | PIDGORNYY Ruslan | 72 |
81 | WALKER Johnnie | 63 |
82 | MIZBANI Ghader | 67 |
84 | KHALMURATOV Muradjan | 68 |
87 | LIU Biao | 67 |