Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.6 * weight + 223
This means that on average for every extra kilogram weight a rider loses -2.6 positions in the result.
Shpilevsky
1
78 kgKaňkovský
2
83 kgKemps
3
73 kgHanson
5
74 kgJanorschke
7
78 kgMetlushenko
12
82 kgOjavee
14
80 kgAlizadeh
18
62 kgWalker
21
63 kgKadlec
25
70 kgWu
31
68 kgPeterson
33
67 kgWang
40
70 kgChan
42
70 kgMcCann
48
73 kgAskari
54
73 kgWilliams
69
75 kgWong
74
65 kgLiu
77
67 kgKhalmuratov
78
68 kgMizbani
83
67 kgWacker
85
65 kgPidgornyy
87
72 kg
1
78 kgKaňkovský
2
83 kgKemps
3
73 kgHanson
5
74 kgJanorschke
7
78 kgMetlushenko
12
82 kgOjavee
14
80 kgAlizadeh
18
62 kgWalker
21
63 kgKadlec
25
70 kgWu
31
68 kgPeterson
33
67 kgWang
40
70 kgChan
42
70 kgMcCann
48
73 kgAskari
54
73 kgWilliams
69
75 kgWong
74
65 kgLiu
77
67 kgKhalmuratov
78
68 kgMizbani
83
67 kgWacker
85
65 kgPidgornyy
87
72 kg
Weight (KG) →
Result →
83
62
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | SHPILEVSKY Boris | 78 |
2 | KAŇKOVSKÝ Alois | 83 |
3 | KEMPS Aaron | 73 |
5 | HANSON Ken | 74 |
7 | JANORSCHKE Grischa | 78 |
12 | METLUSHENKO Yuri | 82 |
14 | OJAVEE Mart | 80 |
18 | ALIZADEH Hossein | 62 |
21 | WALKER Johnnie | 63 |
25 | KADLEC Milan | 70 |
31 | WU Kin San | 68 |
33 | PETERSON Cameron | 67 |
40 | WANG Meiyin | 70 |
42 | CHAN Chun Hing | 70 |
48 | MCCANN David | 73 |
54 | ASKARI Hossein | 73 |
69 | WILLIAMS Christopher | 75 |
74 | WONG Kam-Po | 65 |
77 | LIU Biao | 67 |
78 | KHALMURATOV Muradjan | 68 |
83 | MIZBANI Ghader | 67 |
85 | WACKER Eugen | 65 |
87 | PIDGORNYY Ruslan | 72 |