Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Kadlec
1
70 kgKaňkovský
2
83 kgWang
3
70 kgRosskopf
4
74 kgMetlushenko
5
82 kgChoi
6
59 kgSerebryakov
7
70 kgGoesinnen
9
75 kgGiraud
10
71 kgKrasnov
12
65 kgMcCann
15
73 kgCaldeira
16
76 kgCheung
17
59 kgVaubourzeix
18
70 kgJiang
19
71 kgVasilyev
20
70 kgStallaert
21
72 kgMartinez
24
69 kgMarque
25
68 kgÖrken
28
69 kg
1
70 kgKaňkovský
2
83 kgWang
3
70 kgRosskopf
4
74 kgMetlushenko
5
82 kgChoi
6
59 kgSerebryakov
7
70 kgGoesinnen
9
75 kgGiraud
10
71 kgKrasnov
12
65 kgMcCann
15
73 kgCaldeira
16
76 kgCheung
17
59 kgVaubourzeix
18
70 kgJiang
19
71 kgVasilyev
20
70 kgStallaert
21
72 kgMartinez
24
69 kgMarque
25
68 kgÖrken
28
69 kg
Weight (KG) →
Result →
83
59
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | KADLEC Milan | 70 |
2 | KAŇKOVSKÝ Alois | 83 |
3 | WANG Meiyin | 70 |
4 | ROSSKOPF Joey | 74 |
5 | METLUSHENKO Yuri | 82 |
6 | CHOI Ki Ho | 59 |
7 | SEREBRYAKOV Alexander | 70 |
9 | GOESINNEN Floris | 75 |
10 | GIRAUD Benjamin | 71 |
12 | KRASNOV Leonid | 65 |
15 | MCCANN David | 73 |
16 | CALDEIRA Samuel José | 76 |
17 | CHEUNG King Lok | 59 |
18 | VAUBOURZEIX Thomas | 70 |
19 | JIANG Kun | 71 |
20 | VASILYEV Maksym | 70 |
21 | STALLAERT Joeri | 72 |
24 | MARTINEZ Yannick | 69 |
25 | MARQUE Alejandro Manuel | 68 |
28 | ÖRKEN Ahmet | 69 |