Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Kaňkovský
1
83 kgKadlec
2
70 kgSerebryakov
3
70 kgGiraud
5
71 kgMartinez
6
69 kgWang
7
70 kgRosskopf
8
74 kgMetlushenko
9
82 kgChoi
10
59 kgGoesinnen
11
75 kgKrasnov
12
65 kgCaldeira
14
76 kgMcCann
18
73 kgMarque
19
68 kgCheung
20
59 kgVaubourzeix
24
70 kgJiang
25
71 kgVasilyev
26
70 kgStallaert
27
72 kgMaikin
30
68 kgÖrken
32
69 kg
1
83 kgKadlec
2
70 kgSerebryakov
3
70 kgGiraud
5
71 kgMartinez
6
69 kgWang
7
70 kgRosskopf
8
74 kgMetlushenko
9
82 kgChoi
10
59 kgGoesinnen
11
75 kgKrasnov
12
65 kgCaldeira
14
76 kgMcCann
18
73 kgMarque
19
68 kgCheung
20
59 kgVaubourzeix
24
70 kgJiang
25
71 kgVasilyev
26
70 kgStallaert
27
72 kgMaikin
30
68 kgÖrken
32
69 kg
Weight (KG) →
Result →
83
59
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | KAŇKOVSKÝ Alois | 83 |
2 | KADLEC Milan | 70 |
3 | SEREBRYAKOV Alexander | 70 |
5 | GIRAUD Benjamin | 71 |
6 | MARTINEZ Yannick | 69 |
7 | WANG Meiyin | 70 |
8 | ROSSKOPF Joey | 74 |
9 | METLUSHENKO Yuri | 82 |
10 | CHOI Ki Ho | 59 |
11 | GOESINNEN Floris | 75 |
12 | KRASNOV Leonid | 65 |
14 | CALDEIRA Samuel José | 76 |
18 | MCCANN David | 73 |
19 | MARQUE Alejandro Manuel | 68 |
20 | CHEUNG King Lok | 59 |
24 | VAUBOURZEIX Thomas | 70 |
25 | JIANG Kun | 71 |
26 | VASILYEV Maksym | 70 |
27 | STALLAERT Joeri | 72 |
30 | MAIKIN Roman | 68 |
32 | ÖRKEN Ahmet | 69 |