Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Kaňkovský
1
83 kgSerebryakov
2
70 kgMetlushenko
3
82 kgKadlec
4
70 kgGiraud
6
71 kgWang
7
70 kgKrasnov
8
65 kgMartinez
9
69 kgRosskopf
10
74 kgChoi
11
59 kgGoesinnen
12
75 kgCaldeira
13
76 kgPeeters
14
67 kgStallaert
15
72 kgMcCann
20
73 kgMarque
21
68 kgCheung
22
59 kgVaubourzeix
26
70 kgVasilyev
29
70 kgMaikin
31
68 kgÖrken
36
69 kg
1
83 kgSerebryakov
2
70 kgMetlushenko
3
82 kgKadlec
4
70 kgGiraud
6
71 kgWang
7
70 kgKrasnov
8
65 kgMartinez
9
69 kgRosskopf
10
74 kgChoi
11
59 kgGoesinnen
12
75 kgCaldeira
13
76 kgPeeters
14
67 kgStallaert
15
72 kgMcCann
20
73 kgMarque
21
68 kgCheung
22
59 kgVaubourzeix
26
70 kgVasilyev
29
70 kgMaikin
31
68 kgÖrken
36
69 kg
Weight (KG) →
Result →
83
59
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | KAŇKOVSKÝ Alois | 83 |
2 | SEREBRYAKOV Alexander | 70 |
3 | METLUSHENKO Yuri | 82 |
4 | KADLEC Milan | 70 |
6 | GIRAUD Benjamin | 71 |
7 | WANG Meiyin | 70 |
8 | KRASNOV Leonid | 65 |
9 | MARTINEZ Yannick | 69 |
10 | ROSSKOPF Joey | 74 |
11 | CHOI Ki Ho | 59 |
12 | GOESINNEN Floris | 75 |
13 | CALDEIRA Samuel José | 76 |
14 | PEETERS Kevin | 67 |
15 | STALLAERT Joeri | 72 |
20 | MCCANN David | 73 |
21 | MARQUE Alejandro Manuel | 68 |
22 | CHEUNG King Lok | 59 |
26 | VAUBOURZEIX Thomas | 70 |
29 | VASILYEV Maksym | 70 |
31 | MAIKIN Roman | 68 |
36 | ÖRKEN Ahmet | 69 |