Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Kaňkovský
1
83 kgSerebryakov
2
70 kgGiraud
4
71 kgKrasnov
5
65 kgStallaert
6
72 kgMetlushenko
7
82 kgKadlec
8
70 kgMartinez
9
69 kgPeeters
10
67 kgWang
11
70 kgCaldeira
12
76 kgRosskopf
13
74 kgChoi
14
59 kgGoesinnen
15
75 kgVasilyev
17
70 kgSaleh
21
70 kgMcCann
24
73 kgMarque
25
68 kgCheung
26
59 kgVaubourzeix
31
70 kgMaikin
39
68 kgÖrken
43
69 kg
1
83 kgSerebryakov
2
70 kgGiraud
4
71 kgKrasnov
5
65 kgStallaert
6
72 kgMetlushenko
7
82 kgKadlec
8
70 kgMartinez
9
69 kgPeeters
10
67 kgWang
11
70 kgCaldeira
12
76 kgRosskopf
13
74 kgChoi
14
59 kgGoesinnen
15
75 kgVasilyev
17
70 kgSaleh
21
70 kgMcCann
24
73 kgMarque
25
68 kgCheung
26
59 kgVaubourzeix
31
70 kgMaikin
39
68 kgÖrken
43
69 kg
Weight (KG) →
Result →
83
59
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | KAŇKOVSKÝ Alois | 83 |
2 | SEREBRYAKOV Alexander | 70 |
4 | GIRAUD Benjamin | 71 |
5 | KRASNOV Leonid | 65 |
6 | STALLAERT Joeri | 72 |
7 | METLUSHENKO Yuri | 82 |
8 | KADLEC Milan | 70 |
9 | MARTINEZ Yannick | 69 |
10 | PEETERS Kevin | 67 |
11 | WANG Meiyin | 70 |
12 | CALDEIRA Samuel José | 76 |
13 | ROSSKOPF Joey | 74 |
14 | CHOI Ki Ho | 59 |
15 | GOESINNEN Floris | 75 |
17 | VASILYEV Maksym | 70 |
21 | SALEH Mohd Harrif | 70 |
24 | MCCANN David | 73 |
25 | MARQUE Alejandro Manuel | 68 |
26 | CHEUNG King Lok | 59 |
31 | VAUBOURZEIX Thomas | 70 |
39 | MAIKIN Roman | 68 |
43 | ÖRKEN Ahmet | 69 |