Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 82
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Giraud
1
71 kgKaňkovský
2
83 kgSerebryakov
4
70 kgKrasnov
5
65 kgStallaert
6
72 kgMetlushenko
7
82 kgKadlec
8
70 kgMartinez
9
69 kgPeeters
10
67 kgWang
12
70 kgCaldeira
13
76 kgRosskopf
14
74 kgChoi
15
59 kgÖrken
16
69 kgGoesinnen
17
75 kgVasilyev
20
70 kgMaikin
22
68 kgSaleh
24
70 kgMcCann
27
73 kgMarque
28
68 kgCheung
29
59 kgVaubourzeix
34
70 kgMat Amin
47
54 kg
1
71 kgKaňkovský
2
83 kgSerebryakov
4
70 kgKrasnov
5
65 kgStallaert
6
72 kgMetlushenko
7
82 kgKadlec
8
70 kgMartinez
9
69 kgPeeters
10
67 kgWang
12
70 kgCaldeira
13
76 kgRosskopf
14
74 kgChoi
15
59 kgÖrken
16
69 kgGoesinnen
17
75 kgVasilyev
20
70 kgMaikin
22
68 kgSaleh
24
70 kgMcCann
27
73 kgMarque
28
68 kgCheung
29
59 kgVaubourzeix
34
70 kgMat Amin
47
54 kg
Weight (KG) →
Result →
83
54
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | GIRAUD Benjamin | 71 |
2 | KAŇKOVSKÝ Alois | 83 |
4 | SEREBRYAKOV Alexander | 70 |
5 | KRASNOV Leonid | 65 |
6 | STALLAERT Joeri | 72 |
7 | METLUSHENKO Yuri | 82 |
8 | KADLEC Milan | 70 |
9 | MARTINEZ Yannick | 69 |
10 | PEETERS Kevin | 67 |
12 | WANG Meiyin | 70 |
13 | CALDEIRA Samuel José | 76 |
14 | ROSSKOPF Joey | 74 |
15 | CHOI Ki Ho | 59 |
16 | ÖRKEN Ahmet | 69 |
17 | GOESINNEN Floris | 75 |
20 | VASILYEV Maksym | 70 |
22 | MAIKIN Roman | 68 |
24 | SALEH Mohd Harrif | 70 |
27 | MCCANN David | 73 |
28 | MARQUE Alejandro Manuel | 68 |
29 | CHEUNG King Lok | 59 |
34 | VAUBOURZEIX Thomas | 70 |
47 | MAT AMIN Mohd Shahrul | 54 |