Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Mareczko
1
67 kgPalini
2
67 kgÖrken
4
69 kgŠiškevičius
8
80 kgLaas
10
76 kgVaitkus
11
75 kgButs
12
68 kgVerschoor
14
74.5 kgChtioui
16
82 kgShpilevsky
18
78 kgMeijers
19
68 kgDal Col
22
80 kgWang
23
70 kgBol
25
83 kgSisr
28
72 kgHaddi
31
63 kgMancebo
32
64 kgEl Fares
34
62 kgRahbek
36
66 kgMaas
39
70 kgCornelisse
43
73.5 kgVasylyuk
44
65 kg
1
67 kgPalini
2
67 kgÖrken
4
69 kgŠiškevičius
8
80 kgLaas
10
76 kgVaitkus
11
75 kgButs
12
68 kgVerschoor
14
74.5 kgChtioui
16
82 kgShpilevsky
18
78 kgMeijers
19
68 kgDal Col
22
80 kgWang
23
70 kgBol
25
83 kgSisr
28
72 kgHaddi
31
63 kgMancebo
32
64 kgEl Fares
34
62 kgRahbek
36
66 kgMaas
39
70 kgCornelisse
43
73.5 kgVasylyuk
44
65 kg
Weight (KG) →
Result →
83
62
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | PALINI Andrea | 67 |
4 | ÖRKEN Ahmet | 69 |
8 | ŠIŠKEVIČIUS Evaldas | 80 |
10 | LAAS Martin | 76 |
11 | VAITKUS Tomas | 75 |
12 | BUTS Vitaliy | 68 |
14 | VERSCHOOR Martijn | 74.5 |
16 | CHTIOUI Rafaâ | 82 |
18 | SHPILEVSKY Boris | 78 |
19 | MEIJERS Jeroen | 68 |
22 | DAL COL Andrea | 80 |
23 | WANG Meiyin | 70 |
25 | BOL Cees | 83 |
28 | SISR František | 72 |
31 | HADDI Soufiane | 63 |
32 | MANCEBO Francisco | 64 |
34 | EL FARES Julien | 62 |
36 | RAHBEK Mads | 66 |
39 | MAAS Jan | 70 |
43 | CORNELISSE Mitchell | 73.5 |
44 | VASYLYUK Andriy | 65 |