Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Mareczko
1
67 kgPalini
2
67 kgÖrken
4
69 kgŠiškevičius
9
80 kgButs
10
68 kgChtioui
13
82 kgLaas
14
76 kgMeijers
15
68 kgDal Col
18
80 kgVaitkus
19
75 kgShpilevsky
20
78 kgWang
21
70 kgSisr
25
72 kgVerschoor
26
74.5 kgHaddi
29
63 kgMancebo
30
64 kgEl Fares
32
62 kgRahbek
33
66 kgCornelisse
38
73.5 kgVasylyuk
39
65 kgBol
42
83 kg
1
67 kgPalini
2
67 kgÖrken
4
69 kgŠiškevičius
9
80 kgButs
10
68 kgChtioui
13
82 kgLaas
14
76 kgMeijers
15
68 kgDal Col
18
80 kgVaitkus
19
75 kgShpilevsky
20
78 kgWang
21
70 kgSisr
25
72 kgVerschoor
26
74.5 kgHaddi
29
63 kgMancebo
30
64 kgEl Fares
32
62 kgRahbek
33
66 kgCornelisse
38
73.5 kgVasylyuk
39
65 kgBol
42
83 kg
Weight (KG) →
Result →
83
62
1
42
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | PALINI Andrea | 67 |
4 | ÖRKEN Ahmet | 69 |
9 | ŠIŠKEVIČIUS Evaldas | 80 |
10 | BUTS Vitaliy | 68 |
13 | CHTIOUI Rafaâ | 82 |
14 | LAAS Martin | 76 |
15 | MEIJERS Jeroen | 68 |
18 | DAL COL Andrea | 80 |
19 | VAITKUS Tomas | 75 |
20 | SHPILEVSKY Boris | 78 |
21 | WANG Meiyin | 70 |
25 | SISR František | 72 |
26 | VERSCHOOR Martijn | 74.5 |
29 | HADDI Soufiane | 63 |
30 | MANCEBO Francisco | 64 |
32 | EL FARES Julien | 62 |
33 | RAHBEK Mads | 66 |
38 | CORNELISSE Mitchell | 73.5 |
39 | VASYLYUK Andriy | 65 |
42 | BOL Cees | 83 |