Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Mareczko
1
67 kgMarini
2
72 kgDuque
3
59 kgLiepiņš
4
67 kgGrosu
5
68 kgBogdanovičs
6
68 kgHill
7
67 kgFonzi
13
63 kgCorella
15
75 kgWang
20
70 kgKasyanov
21
62 kgSchulting
25
70 kgVerschoor
26
74.5 kgGodoy
27
64 kgMetlushenko
31
82 kgGraziato
32
73 kgPruus
33
71 kgKhalmuratov
34
68 kgPapok
35
76 kgYamamoto
46
62 kg
1
67 kgMarini
2
72 kgDuque
3
59 kgLiepiņš
4
67 kgGrosu
5
68 kgBogdanovičs
6
68 kgHill
7
67 kgFonzi
13
63 kgCorella
15
75 kgWang
20
70 kgKasyanov
21
62 kgSchulting
25
70 kgVerschoor
26
74.5 kgGodoy
27
64 kgMetlushenko
31
82 kgGraziato
32
73 kgPruus
33
71 kgKhalmuratov
34
68 kgPapok
35
76 kgYamamoto
46
62 kg
Weight (KG) →
Result →
82
59
1
46
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | MARINI Nicolas | 72 |
3 | DUQUE Leonardo Fabio | 59 |
4 | LIEPIŅŠ Emīls | 67 |
5 | GROSU Eduard-Michael | 68 |
6 | BOGDANOVIČS Māris | 68 |
7 | HILL Benjamin | 67 |
13 | FONZI Giuseppe | 63 |
15 | CORELLA Rene | 75 |
20 | WANG Meiyin | 70 |
21 | KASYANOV Oleksiy | 62 |
25 | SCHULTING Peter | 70 |
26 | VERSCHOOR Martijn | 74.5 |
27 | GODOY Yonder | 64 |
31 | METLUSHENKO Yuri | 82 |
32 | GRAZIATO Massimo | 73 |
33 | PRUUS Peeter | 71 |
34 | KHALMURATOV Muradjan | 68 |
35 | PAPOK Siarhei | 76 |
46 | YAMAMOTO Genki | 62 |