Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Mareczko
1
67 kgMarini
2
72 kgDuque
3
59 kgGrosu
4
68 kgLiepiņš
5
67 kgBogdanovičs
6
68 kgHill
7
67 kgFonzi
16
63 kgCorella
19
75 kgPapok
21
76 kgWang
24
70 kgKasyanov
25
62 kgSchulting
27
70 kgVerschoor
28
74.5 kgGodoy
29
64 kgWilliams
33
75 kgMetlushenko
34
82 kgGraziato
35
73 kgPruus
37
71 kgKhalmuratov
38
68 kgYamamoto
49
62 kg
1
67 kgMarini
2
72 kgDuque
3
59 kgGrosu
4
68 kgLiepiņš
5
67 kgBogdanovičs
6
68 kgHill
7
67 kgFonzi
16
63 kgCorella
19
75 kgPapok
21
76 kgWang
24
70 kgKasyanov
25
62 kgSchulting
27
70 kgVerschoor
28
74.5 kgGodoy
29
64 kgWilliams
33
75 kgMetlushenko
34
82 kgGraziato
35
73 kgPruus
37
71 kgKhalmuratov
38
68 kgYamamoto
49
62 kg
Weight (KG) →
Result →
82
59
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | MARINI Nicolas | 72 |
3 | DUQUE Leonardo Fabio | 59 |
4 | GROSU Eduard-Michael | 68 |
5 | LIEPIŅŠ Emīls | 67 |
6 | BOGDANOVIČS Māris | 68 |
7 | HILL Benjamin | 67 |
16 | FONZI Giuseppe | 63 |
19 | CORELLA Rene | 75 |
21 | PAPOK Siarhei | 76 |
24 | WANG Meiyin | 70 |
25 | KASYANOV Oleksiy | 62 |
27 | SCHULTING Peter | 70 |
28 | VERSCHOOR Martijn | 74.5 |
29 | GODOY Yonder | 64 |
33 | WILLIAMS Christopher | 75 |
34 | METLUSHENKO Yuri | 82 |
35 | GRAZIATO Massimo | 73 |
37 | PRUUS Peeter | 71 |
38 | KHALMURATOV Muradjan | 68 |
49 | YAMAMOTO Genki | 62 |