Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Mareczko
1
67 kgMarini
2
72 kgAberasturi
3
69 kgMuzychkin
4
76 kgGiraud
5
71 kgButs
6
68 kgMacanally
7
68 kgAlzate
9
74 kgBoivin
11
78 kgHaedo
13
64 kgLaas
14
76 kgCastillo
16
72 kgHill
17
67 kgBazhkou
18
65 kgTzortzakis
20
80 kgVasylyuk
21
65 kgGroves
24
76 kgRäim
25
69 kgPacher
28
62 kgNazaret
30
65 kg
1
67 kgMarini
2
72 kgAberasturi
3
69 kgMuzychkin
4
76 kgGiraud
5
71 kgButs
6
68 kgMacanally
7
68 kgAlzate
9
74 kgBoivin
11
78 kgHaedo
13
64 kgLaas
14
76 kgCastillo
16
72 kgHill
17
67 kgBazhkou
18
65 kgTzortzakis
20
80 kgVasylyuk
21
65 kgGroves
24
76 kgRäim
25
69 kgPacher
28
62 kgNazaret
30
65 kg
Weight (KG) →
Result →
80
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | MARINI Nicolas | 72 |
3 | ABERASTURI Jon | 69 |
4 | MUZYCHKIN Anton | 76 |
5 | GIRAUD Benjamin | 71 |
6 | BUTS Vitaliy | 68 |
7 | MACANALLY Ryan | 68 |
9 | ALZATE Carlos | 74 |
11 | BOIVIN Guillaume | 78 |
13 | HAEDO Lucas Sebastián | 64 |
14 | LAAS Martin | 76 |
16 | CASTILLO Ulises Alfredo | 72 |
17 | HILL Benjamin | 67 |
18 | BAZHKOU Stanislau | 65 |
20 | TZORTZAKIS Polychronis | 80 |
21 | VASYLYUK Andriy | 65 |
24 | GROVES Kaden | 76 |
25 | RÄIM Mihkel | 69 |
28 | PACHER Quentin | 62 |
30 | NAZARET Magno | 65 |