Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Mareczko
1
67 kgMarini
2
72 kgAberasturi
3
69 kgMuzychkin
4
76 kgButs
5
68 kgAlzate
6
74 kgGiraud
7
71 kgBoivin
10
78 kgRäim
11
69 kgBazhkou
12
65 kgHaedo
15
64 kgLaas
16
76 kgCastillo
18
72 kgHill
19
67 kgTzortzakis
21
80 kgVasylyuk
22
65 kgGroves
25
76 kgPrevar
27
64 kgPacher
29
62 kgNazaret
31
65 kgSolomon
32
66 kg
1
67 kgMarini
2
72 kgAberasturi
3
69 kgMuzychkin
4
76 kgButs
5
68 kgAlzate
6
74 kgGiraud
7
71 kgBoivin
10
78 kgRäim
11
69 kgBazhkou
12
65 kgHaedo
15
64 kgLaas
16
76 kgCastillo
18
72 kgHill
19
67 kgTzortzakis
21
80 kgVasylyuk
22
65 kgGroves
25
76 kgPrevar
27
64 kgPacher
29
62 kgNazaret
31
65 kgSolomon
32
66 kg
Weight (KG) →
Result →
80
62
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | MARECZKO Jakub | 67 |
2 | MARINI Nicolas | 72 |
3 | ABERASTURI Jon | 69 |
4 | MUZYCHKIN Anton | 76 |
5 | BUTS Vitaliy | 68 |
6 | ALZATE Carlos | 74 |
7 | GIRAUD Benjamin | 71 |
10 | BOIVIN Guillaume | 78 |
11 | RÄIM Mihkel | 69 |
12 | BAZHKOU Stanislau | 65 |
15 | HAEDO Lucas Sebastián | 64 |
16 | LAAS Martin | 76 |
18 | CASTILLO Ulises Alfredo | 72 |
19 | HILL Benjamin | 67 |
21 | TZORTZAKIS Polychronis | 80 |
22 | VASYLYUK Andriy | 65 |
25 | GROVES Kaden | 76 |
27 | PREVAR Oleksandr | 64 |
29 | PACHER Quentin | 62 |
31 | NAZARET Magno | 65 |
32 | SOLOMON Zemenfes | 66 |