Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Molano
1
72 kgVallée
2
79 kgMareczko
3
67 kgKennett
4
75 kgTesfatsion
6
60 kgBonifazio
8
63 kgBouglas
9
71 kgJerman
11
67 kgCastillo
12
72 kgCataford
14
70 kgEarle
17
70 kgMartinez
18
69 kgEinhorn
21
72 kgGrošelj
22
70 kgFilosi
23
70 kgFonzi
25
63 kgWilliams
26
73 kgFuentes
27
77 kgMosca
28
65 kgDebesay
32
63 kgTurek
33
72 kgSwirbul
34
65 kgOkamoto
35
65 kg
1
72 kgVallée
2
79 kgMareczko
3
67 kgKennett
4
75 kgTesfatsion
6
60 kgBonifazio
8
63 kgBouglas
9
71 kgJerman
11
67 kgCastillo
12
72 kgCataford
14
70 kgEarle
17
70 kgMartinez
18
69 kgEinhorn
21
72 kgGrošelj
22
70 kgFilosi
23
70 kgFonzi
25
63 kgWilliams
26
73 kgFuentes
27
77 kgMosca
28
65 kgDebesay
32
63 kgTurek
33
72 kgSwirbul
34
65 kgOkamoto
35
65 kg
Weight (KG) →
Result →
79
60
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | MOLANO Juan Sebastián | 72 |
2 | VALLÉE Boris | 79 |
3 | MARECZKO Jakub | 67 |
4 | KENNETT Dylan | 75 |
6 | TESFATSION Natnael | 60 |
8 | BONIFAZIO Leonardo | 63 |
9 | BOUGLAS Georgios | 71 |
11 | JERMAN Žiga | 67 |
12 | CASTILLO Ulises Alfredo | 72 |
14 | CATAFORD Alexander | 70 |
17 | EARLE Nathan | 70 |
18 | MARTINEZ Yannick | 69 |
21 | EINHORN Itamar | 72 |
22 | GROŠELJ Matic | 70 |
23 | FILOSI Iuri | 70 |
25 | FONZI Giuseppe | 63 |
26 | WILLIAMS Tyler | 73 |
27 | FUENTES Ángel | 77 |
28 | MOSCA Jacopo | 65 |
32 | DEBESAY Yakob | 63 |
33 | TUREK Daniel | 72 |
34 | SWIRBUL Keegan | 65 |
35 | OKAMOTO Hayato | 65 |