Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vallée
1
79 kgMolano
2
72 kgMareczko
4
67 kgBouglas
6
71 kgTesfatsion
7
60 kgCataford
8
70 kgMartinez
9
69 kgBonifazio
10
63 kgHill
13
67 kgGrošelj
14
70 kgEinhorn
17
72 kgKennett
19
75 kgFuentes
20
77 kgMosca
21
65 kgDebesay
22
63 kgJerman
23
67 kgTurek
24
72 kgWilliams
25
73 kgSwirbul
26
65 kg
1
79 kgMolano
2
72 kgMareczko
4
67 kgBouglas
6
71 kgTesfatsion
7
60 kgCataford
8
70 kgMartinez
9
69 kgBonifazio
10
63 kgHill
13
67 kgGrošelj
14
70 kgEinhorn
17
72 kgKennett
19
75 kgFuentes
20
77 kgMosca
21
65 kgDebesay
22
63 kgJerman
23
67 kgTurek
24
72 kgWilliams
25
73 kgSwirbul
26
65 kg
Weight (KG) →
Result →
79
60
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VALLÉE Boris | 79 |
2 | MOLANO Juan Sebastián | 72 |
4 | MARECZKO Jakub | 67 |
6 | BOUGLAS Georgios | 71 |
7 | TESFATSION Natnael | 60 |
8 | CATAFORD Alexander | 70 |
9 | MARTINEZ Yannick | 69 |
10 | BONIFAZIO Leonardo | 63 |
13 | HILL Benjamin | 67 |
14 | GROŠELJ Matic | 70 |
17 | EINHORN Itamar | 72 |
19 | KENNETT Dylan | 75 |
20 | FUENTES Ángel | 77 |
21 | MOSCA Jacopo | 65 |
22 | DEBESAY Yakob | 63 |
23 | JERMAN Žiga | 67 |
24 | TUREK Daniel | 72 |
25 | WILLIAMS Tyler | 73 |
26 | SWIRBUL Keegan | 65 |