Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Vallée
1
79 kgMolano
2
72 kgMareczko
3
67 kgKennett
4
75 kgBonifazio
7
63 kgTesfatsion
8
60 kgBouglas
9
71 kgCataford
10
70 kgJerman
12
67 kgMartinez
13
69 kgHill
17
67 kgGrošelj
18
70 kgFilosi
19
70 kgFonzi
21
63 kgEinhorn
22
72 kgWilliams
23
73 kgFuentes
24
77 kgMosca
25
65 kgDebesay
28
63 kgTurek
29
72 kgSwirbul
30
65 kgOkamoto
31
65 kgCastillo
32
72 kg
1
79 kgMolano
2
72 kgMareczko
3
67 kgKennett
4
75 kgBonifazio
7
63 kgTesfatsion
8
60 kgBouglas
9
71 kgCataford
10
70 kgJerman
12
67 kgMartinez
13
69 kgHill
17
67 kgGrošelj
18
70 kgFilosi
19
70 kgFonzi
21
63 kgEinhorn
22
72 kgWilliams
23
73 kgFuentes
24
77 kgMosca
25
65 kgDebesay
28
63 kgTurek
29
72 kgSwirbul
30
65 kgOkamoto
31
65 kgCastillo
32
72 kg
Weight (KG) →
Result →
79
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | VALLÉE Boris | 79 |
2 | MOLANO Juan Sebastián | 72 |
3 | MARECZKO Jakub | 67 |
4 | KENNETT Dylan | 75 |
7 | BONIFAZIO Leonardo | 63 |
8 | TESFATSION Natnael | 60 |
9 | BOUGLAS Georgios | 71 |
10 | CATAFORD Alexander | 70 |
12 | JERMAN Žiga | 67 |
13 | MARTINEZ Yannick | 69 |
17 | HILL Benjamin | 67 |
18 | GROŠELJ Matic | 70 |
19 | FILOSI Iuri | 70 |
21 | FONZI Giuseppe | 63 |
22 | EINHORN Itamar | 72 |
23 | WILLIAMS Tyler | 73 |
24 | FUENTES Ángel | 77 |
25 | MOSCA Jacopo | 65 |
28 | DEBESAY Yakob | 63 |
29 | TUREK Daniel | 72 |
30 | SWIRBUL Keegan | 65 |
31 | OKAMOTO Hayato | 65 |
32 | CASTILLO Ulises Alfredo | 72 |