Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Zanoncello
1
64 kgVan de Paar
2
79 kgJackson
3
75 kgFernández
4
78 kgBostock
5
69 kgCarstensen
7
69 kgBanaszek
8
75 kgViviani
9
69 kgTzortzakis
10
80 kgBogdanovičs
11
68 kgTrarieux
12
71 kgSlock
13
74 kgSchwarzmann
14
69 kgFuentes
15
77 kgSirironnachai
16
61 kgRasch
17
71 kgMudgway
18
63 kgRaileanu
19
63 kg
1
64 kgVan de Paar
2
79 kgJackson
3
75 kgFernández
4
78 kgBostock
5
69 kgCarstensen
7
69 kgBanaszek
8
75 kgViviani
9
69 kgTzortzakis
10
80 kgBogdanovičs
11
68 kgTrarieux
12
71 kgSlock
13
74 kgSchwarzmann
14
69 kgFuentes
15
77 kgSirironnachai
16
61 kgRasch
17
71 kgMudgway
18
63 kgRaileanu
19
63 kg
Weight (KG) →
Result →
80
61
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | ZANONCELLO Enrico | 64 |
2 | VAN DE PAAR Jarne | 79 |
3 | JACKSON George | 75 |
4 | FERNÁNDEZ Miguel Ángel | 78 |
5 | BOSTOCK Matthew | 69 |
7 | CARSTENSEN Lucas | 69 |
8 | BANASZEK Norbert | 75 |
9 | VIVIANI Attilio | 69 |
10 | TZORTZAKIS Polychronis | 80 |
11 | BOGDANOVIČS Māris | 68 |
12 | TRARIEUX Julien | 71 |
13 | SLOCK Liam | 74 |
14 | SCHWARZMANN Michael | 69 |
15 | FUENTES Ángel | 77 |
16 | SIRIRONNACHAI Sarawut | 61 |
17 | RASCH Jesper | 71 |
18 | MUDGWAY Luke | 63 |
19 | RAILEANU Cristian | 63 |