Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Laas
1
76 kgDe Schuyteneer
2
74 kgRasch
3
71 kgPawlak
4
81 kgÄrm
5
75 kgBanaszek
7
75 kgJanse van Rensburg
8
74 kgPopov
9
75 kgLauk
10
69 kgSevilla
12
62 kgTesson
13
59 kgMorin
14
74 kgBennassar
15
71 kgBogdanovičs
16
68 kgBouglas
17
71 kgMenten
19
68 kgManzin
20
69 kgPomorski
21
76 kgShauchenka
22
74 kg
1
76 kgDe Schuyteneer
2
74 kgRasch
3
71 kgPawlak
4
81 kgÄrm
5
75 kgBanaszek
7
75 kgJanse van Rensburg
8
74 kgPopov
9
75 kgLauk
10
69 kgSevilla
12
62 kgTesson
13
59 kgMorin
14
74 kgBennassar
15
71 kgBogdanovičs
16
68 kgBouglas
17
71 kgMenten
19
68 kgManzin
20
69 kgPomorski
21
76 kgShauchenka
22
74 kg
Weight (KG) →
Result →
81
59
1
22
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | LAAS Martin | 76 |
| 2 | DE SCHUYTENEER Steffen | 74 |
| 3 | RASCH Jesper | 71 |
| 4 | PAWLAK Tobiasz | 81 |
| 5 | ÄRM Rait | 75 |
| 7 | BANASZEK Norbert | 75 |
| 8 | JANSE VAN RENSBURG Reinardt | 74 |
| 9 | POPOV Anton | 75 |
| 10 | LAUK Karl Patrick | 69 |
| 12 | SEVILLA Óscar | 62 |
| 13 | TESSON Jason | 59 |
| 14 | MORIN Emmanuel | 74 |
| 15 | BENNASSAR Francesc | 71 |
| 16 | BOGDANOVIČS Māris | 68 |
| 17 | BOUGLAS Georgios | 71 |
| 19 | MENTEN Milan | 68 |
| 20 | MANZIN Lorrenzo | 69 |
| 21 | POMORSKI Michał | 76 |
| 22 | SHAUCHENKA Siarhei | 74 |