Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.5 * weight + 208
This means that on average for every extra kilogram weight a rider loses -2.5 positions in the result.
Reijnen
1
63 kgFriedman
2
82 kgRoutley
3
69 kgOjavee
12
80 kgMcCann
14
73 kgHatanaka
15
72 kgKirsipuu
18
80 kgJiang
26
71 kgBoonratanathanakorn
27
72 kgSai-udomsin
28
60 kgXu
34
69 kgUchima
38
63 kgSuzuki
43
57 kgLiphongyu
44
61 kgFukuda
54
70 kgSaleh
67
58 kgZakharov
80
70 kgGaledo
92
58 kgPriya Prasetya
97
62 kgWijaya
104
58 kg
1
63 kgFriedman
2
82 kgRoutley
3
69 kgOjavee
12
80 kgMcCann
14
73 kgHatanaka
15
72 kgKirsipuu
18
80 kgJiang
26
71 kgBoonratanathanakorn
27
72 kgSai-udomsin
28
60 kgXu
34
69 kgUchima
38
63 kgSuzuki
43
57 kgLiphongyu
44
61 kgFukuda
54
70 kgSaleh
67
58 kgZakharov
80
70 kgGaledo
92
58 kgPriya Prasetya
97
62 kgWijaya
104
58 kg
Weight (KG) →
Result →
82
57
1
104
# | Rider | Weight (KG) |
---|---|---|
1 | REIJNEN Kiel | 63 |
2 | FRIEDMAN Michael | 82 |
3 | ROUTLEY Will | 69 |
12 | OJAVEE Mart | 80 |
14 | MCCANN David | 73 |
15 | HATANAKA Yusuke | 72 |
18 | KIRSIPUU Jaan | 80 |
26 | JIANG Kun | 71 |
27 | BOONRATANATHANAKORN Turakit | 72 |
28 | SAI-UDOMSIN Phuchong | 60 |
34 | XU Gang | 69 |
38 | UCHIMA Kohei | 63 |
43 | SUZUKI Yuzuru | 57 |
44 | LIPHONGYU Navuti | 61 |
54 | FUKUDA Shinpei | 70 |
67 | SALEH Mohd Zamri | 58 |
80 | ZAKHAROV Artyom | 70 |
92 | GALEDO Mark John Lexer | 58 |
97 | PRIYA PRASETYA Heksa | 62 |
104 | WIJAYA Endra | 58 |