Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 48
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
McCann
1
73 kgLiphongyu
2
61 kgSaleh
5
58 kgKirsipuu
6
80 kgWijaya
15
58 kgPriya Prasetya
16
62 kgReijnen
20
63 kgXu
25
69 kgOjavee
34
80 kgZakharov
36
70 kgGaledo
38
58 kgBoonratanathanakorn
39
72 kgSuzuki
40
57 kgFukuda
42
70 kgSai-udomsin
52
60 kgUchima
57
63 kgJiang
71
71 kgRoutley
100
69 kgFriedman
101
82 kgHatanaka
107
72 kg
1
73 kgLiphongyu
2
61 kgSaleh
5
58 kgKirsipuu
6
80 kgWijaya
15
58 kgPriya Prasetya
16
62 kgReijnen
20
63 kgXu
25
69 kgOjavee
34
80 kgZakharov
36
70 kgGaledo
38
58 kgBoonratanathanakorn
39
72 kgSuzuki
40
57 kgFukuda
42
70 kgSai-udomsin
52
60 kgUchima
57
63 kgJiang
71
71 kgRoutley
100
69 kgFriedman
101
82 kgHatanaka
107
72 kg
Weight (KG) →
Result →
82
57
1
107
# | Rider | Weight (KG) |
---|---|---|
1 | MCCANN David | 73 |
2 | LIPHONGYU Navuti | 61 |
5 | SALEH Mohd Zamri | 58 |
6 | KIRSIPUU Jaan | 80 |
15 | WIJAYA Endra | 58 |
16 | PRIYA PRASETYA Heksa | 62 |
20 | REIJNEN Kiel | 63 |
25 | XU Gang | 69 |
34 | OJAVEE Mart | 80 |
36 | ZAKHAROV Artyom | 70 |
38 | GALEDO Mark John Lexer | 58 |
39 | BOONRATANATHANAKORN Turakit | 72 |
40 | SUZUKI Yuzuru | 57 |
42 | FUKUDA Shinpei | 70 |
52 | SAI-UDOMSIN Phuchong | 60 |
57 | UCHIMA Kohei | 63 |
71 | JIANG Kun | 71 |
100 | ROUTLEY Will | 69 |
101 | FRIEDMAN Michael | 82 |
107 | HATANAKA Yusuke | 72 |