Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Kirsipuu
3
80 kgSaleh
6
58 kgFriedman
7
82 kgReijnen
10
63 kgOjavee
15
80 kgSuzuki
18
57 kgPriya Prasetya
25
62 kgBoonratanathanakorn
28
72 kgMcCann
36
73 kgFukuda
40
70 kgLiphongyu
41
61 kgGaledo
47
58 kgWijaya
49
58 kgZakharov
51
70 kgSai-udomsin
61
60 kgHatanaka
66
72 kgXu
74
69 kgRoutley
85
69 kgUchima
87
63 kg
3
80 kgSaleh
6
58 kgFriedman
7
82 kgReijnen
10
63 kgOjavee
15
80 kgSuzuki
18
57 kgPriya Prasetya
25
62 kgBoonratanathanakorn
28
72 kgMcCann
36
73 kgFukuda
40
70 kgLiphongyu
41
61 kgGaledo
47
58 kgWijaya
49
58 kgZakharov
51
70 kgSai-udomsin
61
60 kgHatanaka
66
72 kgXu
74
69 kgRoutley
85
69 kgUchima
87
63 kg
Weight (KG) →
Result →
82
57
3
87
# | Rider | Weight (KG) |
---|---|---|
3 | KIRSIPUU Jaan | 80 |
6 | SALEH Mohd Zamri | 58 |
7 | FRIEDMAN Michael | 82 |
10 | REIJNEN Kiel | 63 |
15 | OJAVEE Mart | 80 |
18 | SUZUKI Yuzuru | 57 |
25 | PRIYA PRASETYA Heksa | 62 |
28 | BOONRATANATHANAKORN Turakit | 72 |
36 | MCCANN David | 73 |
40 | FUKUDA Shinpei | 70 |
41 | LIPHONGYU Navuti | 61 |
47 | GALEDO Mark John Lexer | 58 |
49 | WIJAYA Endra | 58 |
51 | ZAKHAROV Artyom | 70 |
61 | SAI-UDOMSIN Phuchong | 60 |
66 | HATANAKA Yusuke | 72 |
74 | XU Gang | 69 |
85 | ROUTLEY Will | 69 |
87 | UCHIMA Kohei | 63 |