Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 77
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Reijnen
2
63 kgKirsipuu
5
80 kgSuzuki
7
57 kgSai-udomsin
11
60 kgOjavee
14
80 kgBoonratanathanakorn
19
72 kgZakharov
21
70 kgMcCann
24
73 kgSaleh
26
58 kgGaledo
55
58 kgWijaya
67
58 kgFriedman
74
82 kgHatanaka
75
72 kgUchima
77
63 kgXu
81
69 kgFukuda
96
70 kgRoutley
101
69 kgLiphongyu
104
61 kgPriya Prasetya
105
62 kg
2
63 kgKirsipuu
5
80 kgSuzuki
7
57 kgSai-udomsin
11
60 kgOjavee
14
80 kgBoonratanathanakorn
19
72 kgZakharov
21
70 kgMcCann
24
73 kgSaleh
26
58 kgGaledo
55
58 kgWijaya
67
58 kgFriedman
74
82 kgHatanaka
75
72 kgUchima
77
63 kgXu
81
69 kgFukuda
96
70 kgRoutley
101
69 kgLiphongyu
104
61 kgPriya Prasetya
105
62 kg
Weight (KG) →
Result →
82
57
2
105
# | Rider | Weight (KG) |
---|---|---|
2 | REIJNEN Kiel | 63 |
5 | KIRSIPUU Jaan | 80 |
7 | SUZUKI Yuzuru | 57 |
11 | SAI-UDOMSIN Phuchong | 60 |
14 | OJAVEE Mart | 80 |
19 | BOONRATANATHANAKORN Turakit | 72 |
21 | ZAKHAROV Artyom | 70 |
24 | MCCANN David | 73 |
26 | SALEH Mohd Zamri | 58 |
55 | GALEDO Mark John Lexer | 58 |
67 | WIJAYA Endra | 58 |
74 | FRIEDMAN Michael | 82 |
75 | HATANAKA Yusuke | 72 |
77 | UCHIMA Kohei | 63 |
81 | XU Gang | 69 |
96 | FUKUDA Shinpei | 70 |
101 | ROUTLEY Will | 69 |
104 | LIPHONGYU Navuti | 61 |
105 | PRIYA PRASETYA Heksa | 62 |