Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Sai-udomsin
4
60 kgShimizu
5
60 kgWalker
9
63 kgGaledo
14
58 kgBoonratanathanakorn
15
72 kgNikitin
23
61 kgPark
25
73 kgSeo
26
66 kgNemati Khiavi
27
60 kgSirironnachai
35
61 kgLiphongyu
39
61 kgWijaya
40
58 kgPhounsavath
50
67 kgFukushima
55
62 kgYamamoto
61
62 kgPriya Prasetya
67
62 kgWong
74
65 kgSim
86
64 kgAlizadeh
88
62 kgEbsen
91
58 kg
4
60 kgShimizu
5
60 kgWalker
9
63 kgGaledo
14
58 kgBoonratanathanakorn
15
72 kgNikitin
23
61 kgPark
25
73 kgSeo
26
66 kgNemati Khiavi
27
60 kgSirironnachai
35
61 kgLiphongyu
39
61 kgWijaya
40
58 kgPhounsavath
50
67 kgFukushima
55
62 kgYamamoto
61
62 kgPriya Prasetya
67
62 kgWong
74
65 kgSim
86
64 kgAlizadeh
88
62 kgEbsen
91
58 kg
Weight (KG) →
Result →
73
58
4
91
# | Rider | Weight (KG) |
---|---|---|
4 | SAI-UDOMSIN Phuchong | 60 |
5 | SHIMIZU Miyataka | 60 |
9 | WALKER Johnnie | 63 |
14 | GALEDO Mark John Lexer | 58 |
15 | BOONRATANATHANAKORN Turakit | 72 |
23 | NIKITIN Matvey | 61 |
25 | PARK Sung Baek | 73 |
26 | SEO Joon Yong | 66 |
27 | NEMATI KHIAVI Ali | 60 |
35 | SIRIRONNACHAI Sarawut | 61 |
39 | LIPHONGYU Navuti | 61 |
40 | WIJAYA Endra | 58 |
50 | PHOUNSAVATH Ariya | 67 |
55 | FUKUSHIMA Shinichi | 62 |
61 | YAMAMOTO Genki | 62 |
67 | PRIYA PRASETYA Heksa | 62 |
74 | WONG Kam-Po | 65 |
86 | SIM Teck Kwang Calvin | 64 |
88 | ALIZADEH Hossein | 62 |
91 | EBSEN John | 58 |