Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 130
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Park
4
73 kgNikitin
6
61 kgWong
7
65 kgSai-udomsin
11
60 kgSeo
17
66 kgShimizu
24
60 kgSirironnachai
25
61 kgWalker
26
63 kgGaledo
30
58 kgAlizadeh
32
62 kgLiphongyu
34
61 kgPhounsavath
40
67 kgBoonratanathanakorn
41
72 kgYamamoto
47
62 kgEbsen
55
58 kgWijaya
56
58 kgNemati Khiavi
66
60 kgFukushima
79
62 kgSim
84
64 kgPriya Prasetya
94
62 kg
4
73 kgNikitin
6
61 kgWong
7
65 kgSai-udomsin
11
60 kgSeo
17
66 kgShimizu
24
60 kgSirironnachai
25
61 kgWalker
26
63 kgGaledo
30
58 kgAlizadeh
32
62 kgLiphongyu
34
61 kgPhounsavath
40
67 kgBoonratanathanakorn
41
72 kgYamamoto
47
62 kgEbsen
55
58 kgWijaya
56
58 kgNemati Khiavi
66
60 kgFukushima
79
62 kgSim
84
64 kgPriya Prasetya
94
62 kg
Weight (KG) →
Result →
73
58
4
94
# | Rider | Weight (KG) |
---|---|---|
4 | PARK Sung Baek | 73 |
6 | NIKITIN Matvey | 61 |
7 | WONG Kam-Po | 65 |
11 | SAI-UDOMSIN Phuchong | 60 |
17 | SEO Joon Yong | 66 |
24 | SHIMIZU Miyataka | 60 |
25 | SIRIRONNACHAI Sarawut | 61 |
26 | WALKER Johnnie | 63 |
30 | GALEDO Mark John Lexer | 58 |
32 | ALIZADEH Hossein | 62 |
34 | LIPHONGYU Navuti | 61 |
40 | PHOUNSAVATH Ariya | 67 |
41 | BOONRATANATHANAKORN Turakit | 72 |
47 | YAMAMOTO Genki | 62 |
55 | EBSEN John | 58 |
56 | WIJAYA Endra | 58 |
66 | NEMATI KHIAVI Ali | 60 |
79 | FUKUSHIMA Shinichi | 62 |
84 | SIM Teck Kwang Calvin | 64 |
94 | PRIYA PRASETYA Heksa | 62 |