Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 141
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Park
5
73 kgNikitin
10
61 kgShimizu
15
60 kgSai-udomsin
18
60 kgPriya Prasetya
20
62 kgWong
25
65 kgAlizadeh
28
62 kgWalker
30
63 kgBoonratanathanakorn
32
72 kgSirironnachai
36
61 kgLiphongyu
39
61 kgSeo
47
66 kgPhounsavath
50
67 kgGaledo
54
58 kgFukushima
60
62 kgWijaya
64
58 kgEbsen
65
58 kgNemati Khiavi
71
60 kgSim
90
64 kg
5
73 kgNikitin
10
61 kgShimizu
15
60 kgSai-udomsin
18
60 kgPriya Prasetya
20
62 kgWong
25
65 kgAlizadeh
28
62 kgWalker
30
63 kgBoonratanathanakorn
32
72 kgSirironnachai
36
61 kgLiphongyu
39
61 kgSeo
47
66 kgPhounsavath
50
67 kgGaledo
54
58 kgFukushima
60
62 kgWijaya
64
58 kgEbsen
65
58 kgNemati Khiavi
71
60 kgSim
90
64 kg
Weight (KG) →
Result →
73
58
5
90
# | Rider | Weight (KG) |
---|---|---|
5 | PARK Sung Baek | 73 |
10 | NIKITIN Matvey | 61 |
15 | SHIMIZU Miyataka | 60 |
18 | SAI-UDOMSIN Phuchong | 60 |
20 | PRIYA PRASETYA Heksa | 62 |
25 | WONG Kam-Po | 65 |
28 | ALIZADEH Hossein | 62 |
30 | WALKER Johnnie | 63 |
32 | BOONRATANATHANAKORN Turakit | 72 |
36 | SIRIRONNACHAI Sarawut | 61 |
39 | LIPHONGYU Navuti | 61 |
47 | SEO Joon Yong | 66 |
50 | PHOUNSAVATH Ariya | 67 |
54 | GALEDO Mark John Lexer | 58 |
60 | FUKUSHIMA Shinichi | 62 |
64 | WIJAYA Endra | 58 |
65 | EBSEN John | 58 |
71 | NEMATI KHIAVI Ali | 60 |
90 | SIM Teck Kwang Calvin | 64 |