Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Asadov
5
77 kgChoi
7
59 kgCheung
10
59 kgPriya Prasetya
11
62 kgKhalmuratov
15
68 kgKuboki
16
68 kgMcconvey
18
67 kgIribe
21
61 kgYasuhara
25
62 kgNakajima
28
64 kgLeung
33
73 kgTrịnh
34
70 kgSaleh
35
58 kgGaledo
54
58 kgFukuda
56
70 kgHatanaka
59
72 kgGoh
68
54 kgMat Amin
72
54 kgBoonratanathanakorn
82
72 kgSaleh
85
70 kgLiphongyu
91
61 kg
5
77 kgChoi
7
59 kgCheung
10
59 kgPriya Prasetya
11
62 kgKhalmuratov
15
68 kgKuboki
16
68 kgMcconvey
18
67 kgIribe
21
61 kgYasuhara
25
62 kgNakajima
28
64 kgLeung
33
73 kgTrịnh
34
70 kgSaleh
35
58 kgGaledo
54
58 kgFukuda
56
70 kgHatanaka
59
72 kgGoh
68
54 kgMat Amin
72
54 kgBoonratanathanakorn
82
72 kgSaleh
85
70 kgLiphongyu
91
61 kg
Weight (KG) →
Result →
77
54
5
91
# | Rider | Weight (KG) |
---|---|---|
5 | ASADOV Elchin | 77 |
7 | CHOI Ki Ho | 59 |
10 | CHEUNG King Lok | 59 |
11 | PRIYA PRASETYA Heksa | 62 |
15 | KHALMURATOV Muradjan | 68 |
16 | KUBOKI Kazushige | 68 |
18 | MCCONVEY Connor | 67 |
21 | IRIBE Shotaro | 61 |
25 | YASUHARA Daiki | 62 |
28 | NAKAJIMA Yasuharu | 64 |
33 | LEUNG Chun Wing | 73 |
34 | TRỊNH Đức Tâm | 70 |
35 | SALEH Mohd Zamri | 58 |
54 | GALEDO Mark John Lexer | 58 |
56 | FUKUDA Shinpei | 70 |
59 | HATANAKA Yusuke | 72 |
68 | GOH Choon Huat | 54 |
72 | MAT AMIN Mohd Shahrul | 54 |
82 | BOONRATANATHANAKORN Turakit | 72 |
85 | SALEH Mohd Harrif | 70 |
91 | LIPHONGYU Navuti | 61 |