Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 114
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Saleh
6
70 kgPriya Prasetya
8
62 kgSaleh
11
58 kgNakajima
18
64 kgLiphongyu
21
61 kgLeung
24
73 kgAsadov
25
77 kgBoonratanathanakorn
29
72 kgTrịnh
33
70 kgFukuda
35
70 kgMcconvey
43
67 kgGoh
49
54 kgChoi
51
59 kgGaledo
58
58 kgHatanaka
61
72 kgCheung
62
59 kgMat Amin
75
54 kgKhalmuratov
79
68 kgKuboki
80
68 kgIribe
82
61 kgYasuhara
91
62 kg
6
70 kgPriya Prasetya
8
62 kgSaleh
11
58 kgNakajima
18
64 kgLiphongyu
21
61 kgLeung
24
73 kgAsadov
25
77 kgBoonratanathanakorn
29
72 kgTrịnh
33
70 kgFukuda
35
70 kgMcconvey
43
67 kgGoh
49
54 kgChoi
51
59 kgGaledo
58
58 kgHatanaka
61
72 kgCheung
62
59 kgMat Amin
75
54 kgKhalmuratov
79
68 kgKuboki
80
68 kgIribe
82
61 kgYasuhara
91
62 kg
Weight (KG) →
Result →
77
54
6
91
# | Rider | Weight (KG) |
---|---|---|
6 | SALEH Mohd Harrif | 70 |
8 | PRIYA PRASETYA Heksa | 62 |
11 | SALEH Mohd Zamri | 58 |
18 | NAKAJIMA Yasuharu | 64 |
21 | LIPHONGYU Navuti | 61 |
24 | LEUNG Chun Wing | 73 |
25 | ASADOV Elchin | 77 |
29 | BOONRATANATHANAKORN Turakit | 72 |
33 | TRỊNH Đức Tâm | 70 |
35 | FUKUDA Shinpei | 70 |
43 | MCCONVEY Connor | 67 |
49 | GOH Choon Huat | 54 |
51 | CHOI Ki Ho | 59 |
58 | GALEDO Mark John Lexer | 58 |
61 | HATANAKA Yusuke | 72 |
62 | CHEUNG King Lok | 59 |
75 | MAT AMIN Mohd Shahrul | 54 |
79 | KHALMURATOV Muradjan | 68 |
80 | KUBOKI Kazushige | 68 |
82 | IRIBE Shotaro | 61 |
91 | YASUHARA Daiki | 62 |