Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Boonratanathanakorn
1
72 kgMcconvey
2
67 kgSaleh
6
58 kgMat Amin
7
54 kgHatanaka
9
72 kgAsadov
16
77 kgNakajima
20
64 kgLiphongyu
21
61 kgTrịnh
22
70 kgChoi
27
59 kgCheung
30
59 kgIribe
38
61 kgGaledo
39
58 kgKuboki
61
68 kgYasuhara
69
62 kgLeung
73
73 kgGoh
75
54 kgPriya Prasetya
86
62 kgFukuda
87
70 kgKhalmuratov
92
68 kgSaleh
95
70 kg
1
72 kgMcconvey
2
67 kgSaleh
6
58 kgMat Amin
7
54 kgHatanaka
9
72 kgAsadov
16
77 kgNakajima
20
64 kgLiphongyu
21
61 kgTrịnh
22
70 kgChoi
27
59 kgCheung
30
59 kgIribe
38
61 kgGaledo
39
58 kgKuboki
61
68 kgYasuhara
69
62 kgLeung
73
73 kgGoh
75
54 kgPriya Prasetya
86
62 kgFukuda
87
70 kgKhalmuratov
92
68 kgSaleh
95
70 kg
Weight (KG) →
Result →
77
54
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | BOONRATANATHANAKORN Turakit | 72 |
2 | MCCONVEY Connor | 67 |
6 | SALEH Mohd Zamri | 58 |
7 | MAT AMIN Mohd Shahrul | 54 |
9 | HATANAKA Yusuke | 72 |
16 | ASADOV Elchin | 77 |
20 | NAKAJIMA Yasuharu | 64 |
21 | LIPHONGYU Navuti | 61 |
22 | TRỊNH Đức Tâm | 70 |
27 | CHOI Ki Ho | 59 |
30 | CHEUNG King Lok | 59 |
38 | IRIBE Shotaro | 61 |
39 | GALEDO Mark John Lexer | 58 |
61 | KUBOKI Kazushige | 68 |
69 | YASUHARA Daiki | 62 |
73 | LEUNG Chun Wing | 73 |
75 | GOH Choon Huat | 54 |
86 | PRIYA PRASETYA Heksa | 62 |
87 | FUKUDA Shinpei | 70 |
92 | KHALMURATOV Muradjan | 68 |
95 | SALEH Mohd Harrif | 70 |