Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 100
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Saleh
6
70 kgFukuda
7
70 kgSaleh
8
58 kgPriya Prasetya
20
62 kgNakajima
28
64 kgBoonratanathanakorn
31
72 kgLeung
35
73 kgAsadov
37
77 kgMcconvey
38
67 kgTrịnh
39
70 kgLiphongyu
41
61 kgGoh
49
54 kgCheung
52
59 kgChoi
55
59 kgHatanaka
56
72 kgGaledo
57
58 kgIribe
63
61 kgMat Amin
70
54 kgKhalmuratov
83
68 kgKuboki
86
68 kgYasuhara
89
62 kg
6
70 kgFukuda
7
70 kgSaleh
8
58 kgPriya Prasetya
20
62 kgNakajima
28
64 kgBoonratanathanakorn
31
72 kgLeung
35
73 kgAsadov
37
77 kgMcconvey
38
67 kgTrịnh
39
70 kgLiphongyu
41
61 kgGoh
49
54 kgCheung
52
59 kgChoi
55
59 kgHatanaka
56
72 kgGaledo
57
58 kgIribe
63
61 kgMat Amin
70
54 kgKhalmuratov
83
68 kgKuboki
86
68 kgYasuhara
89
62 kg
Weight (KG) →
Result →
77
54
6
89
# | Rider | Weight (KG) |
---|---|---|
6 | SALEH Mohd Harrif | 70 |
7 | FUKUDA Shinpei | 70 |
8 | SALEH Mohd Zamri | 58 |
20 | PRIYA PRASETYA Heksa | 62 |
28 | NAKAJIMA Yasuharu | 64 |
31 | BOONRATANATHANAKORN Turakit | 72 |
35 | LEUNG Chun Wing | 73 |
37 | ASADOV Elchin | 77 |
38 | MCCONVEY Connor | 67 |
39 | TRỊNH Đức Tâm | 70 |
41 | LIPHONGYU Navuti | 61 |
49 | GOH Choon Huat | 54 |
52 | CHEUNG King Lok | 59 |
55 | CHOI Ki Ho | 59 |
56 | HATANAKA Yusuke | 72 |
57 | GALEDO Mark John Lexer | 58 |
63 | IRIBE Shotaro | 61 |
70 | MAT AMIN Mohd Shahrul | 54 |
83 | KHALMURATOV Muradjan | 68 |
86 | KUBOKI Kazushige | 68 |
89 | YASUHARA Daiki | 62 |