Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 28
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Khalmuratov
5
68 kgCheung
8
59 kgChoi
10
59 kgNakajima
15
64 kgLiphongyu
16
61 kgMcconvey
17
67 kgGoh
19
54 kgMat Amin
20
54 kgLeung
24
73 kgGaledo
25
58 kgAsadov
34
77 kgKuboki
36
68 kgPriya Prasetya
37
62 kgHatanaka
54
72 kgIribe
55
61 kgBoonratanathanakorn
57
72 kgTrịnh
60
70 kgYasuhara
72
62 kgSaleh
73
70 kgFukuda
77
70 kgSaleh
85
58 kg
5
68 kgCheung
8
59 kgChoi
10
59 kgNakajima
15
64 kgLiphongyu
16
61 kgMcconvey
17
67 kgGoh
19
54 kgMat Amin
20
54 kgLeung
24
73 kgGaledo
25
58 kgAsadov
34
77 kgKuboki
36
68 kgPriya Prasetya
37
62 kgHatanaka
54
72 kgIribe
55
61 kgBoonratanathanakorn
57
72 kgTrịnh
60
70 kgYasuhara
72
62 kgSaleh
73
70 kgFukuda
77
70 kgSaleh
85
58 kg
Weight (KG) →
Result →
77
54
5
85
# | Rider | Weight (KG) |
---|---|---|
5 | KHALMURATOV Muradjan | 68 |
8 | CHEUNG King Lok | 59 |
10 | CHOI Ki Ho | 59 |
15 | NAKAJIMA Yasuharu | 64 |
16 | LIPHONGYU Navuti | 61 |
17 | MCCONVEY Connor | 67 |
19 | GOH Choon Huat | 54 |
20 | MAT AMIN Mohd Shahrul | 54 |
24 | LEUNG Chun Wing | 73 |
25 | GALEDO Mark John Lexer | 58 |
34 | ASADOV Elchin | 77 |
36 | KUBOKI Kazushige | 68 |
37 | PRIYA PRASETYA Heksa | 62 |
54 | HATANAKA Yusuke | 72 |
55 | IRIBE Shotaro | 61 |
57 | BOONRATANATHANAKORN Turakit | 72 |
60 | TRỊNH Đức Tâm | 70 |
72 | YASUHARA Daiki | 62 |
73 | SALEH Mohd Harrif | 70 |
77 | FUKUDA Shinpei | 70 |
85 | SALEH Mohd Zamri | 58 |