Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 40
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Haedo
1
64 kgNakajima
2
64 kgMancebo
3
64 kgCheung
4
59 kgde Jonge
5
65 kgFeng
6
68 kgMora
10
70 kgSaleh
11
70 kgSirironnachai
13
61 kgGoh
14
54 kgSai-udomsin
16
60 kgLebas
20
65 kgJelloul
24
58 kgUchima
26
63 kgKhalmuratov
27
68 kgShimizu
29
60 kgFukuda
34
70 kgLeung
35
73 kgMulhern
40
75 kgEbsen
41
58 kgBoonratanathanakorn
47
72 kgPanassenko
48
69 kg
1
64 kgNakajima
2
64 kgMancebo
3
64 kgCheung
4
59 kgde Jonge
5
65 kgFeng
6
68 kgMora
10
70 kgSaleh
11
70 kgSirironnachai
13
61 kgGoh
14
54 kgSai-udomsin
16
60 kgLebas
20
65 kgJelloul
24
58 kgUchima
26
63 kgKhalmuratov
27
68 kgShimizu
29
60 kgFukuda
34
70 kgLeung
35
73 kgMulhern
40
75 kgEbsen
41
58 kgBoonratanathanakorn
47
72 kgPanassenko
48
69 kg
Weight (KG) →
Result →
75
54
1
48
# | Rider | Weight (KG) |
---|---|---|
1 | HAEDO Lucas Sebastián | 64 |
2 | NAKAJIMA Yasuharu | 64 |
3 | MANCEBO Francisco | 64 |
4 | CHEUNG King Lok | 59 |
5 | DE JONGE Maarten | 65 |
6 | FENG Chun Kai | 68 |
10 | MORA Sebastián | 70 |
11 | SALEH Mohd Harrif | 70 |
13 | SIRIRONNACHAI Sarawut | 61 |
14 | GOH Choon Huat | 54 |
16 | SAI-UDOMSIN Phuchong | 60 |
20 | LEBAS Thomas | 65 |
24 | JELLOUL Adil | 58 |
26 | UCHIMA Kohei | 63 |
27 | KHALMURATOV Muradjan | 68 |
29 | SHIMIZU Miyataka | 60 |
34 | FUKUDA Shinpei | 70 |
35 | LEUNG Chun Wing | 73 |
40 | MULHERN Mitchell | 75 |
41 | EBSEN John | 58 |
47 | BOONRATANATHANAKORN Turakit | 72 |
48 | PANASSENKO Nikita | 69 |