Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Park
2
73 kgSeo
3
66 kgUchima
4
63 kgSirironnachai
5
61 kgCheung
6
59 kgNakajima
7
64 kgSohrabi
8
69 kgKim
9
70 kgSaleh
16
70 kgTrịnh
17
70 kgKhalmuratov
19
68 kgPerget
20
64 kgZemlyakov
22
70 kgShushemoin
24
62 kgPeng
26
65 kgKazemi
30
71 kgLeung
35
73 kgWang
37
70 kgPriya Prasetya
39
62 kgMazuki
47
57 kg
2
73 kgSeo
3
66 kgUchima
4
63 kgSirironnachai
5
61 kgCheung
6
59 kgNakajima
7
64 kgSohrabi
8
69 kgKim
9
70 kgSaleh
16
70 kgTrịnh
17
70 kgKhalmuratov
19
68 kgPerget
20
64 kgZemlyakov
22
70 kgShushemoin
24
62 kgPeng
26
65 kgKazemi
30
71 kgLeung
35
73 kgWang
37
70 kgPriya Prasetya
39
62 kgMazuki
47
57 kg
Weight (KG) →
Result →
73
57
2
47
# | Rider | Weight (KG) |
---|---|---|
2 | PARK Sung Baek | 73 |
3 | SEO Joon Yong | 66 |
4 | UCHIMA Kohei | 63 |
5 | SIRIRONNACHAI Sarawut | 61 |
6 | CHEUNG King Lok | 59 |
7 | NAKAJIMA Yasuharu | 64 |
8 | SOHRABI Mehdi | 69 |
9 | KIM Ok Cheol | 70 |
16 | SALEH Mohd Harrif | 70 |
17 | TRỊNH Đức Tâm | 70 |
19 | KHALMURATOV Muradjan | 68 |
20 | PERGET Mathieu | 64 |
22 | ZEMLYAKOV Oleg | 70 |
24 | SHUSHEMOIN Alexandr | 62 |
26 | PENG Yuan Tang | 65 |
30 | KAZEMI Sarai Ahad | 71 |
35 | LEUNG Chun Wing | 73 |
37 | WANG Meiyin | 70 |
39 | PRIYA PRASETYA Heksa | 62 |
47 | MAZUKI Nur Amirul Fakhruddin | 57 |