Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Saleh
2
70 kgHill
6
67 kgPark
7
77 kgSaleh
9
58 kgNakajima
10
64 kgChawchiangkwang
15
64 kgDyudya
16
80 kgShushemoin
18
62 kgMohd Zariff
19
63 kgKim
20
70 kgTrịnh
21
70 kgPark
22
73 kgSirironnachai
25
61 kgde Jonge
26
65 kgFelipe
30
58 kgBizhigitov
32
76 kgNieto
42
58 kgWhitehouse
43
58 kg
2
70 kgHill
6
67 kgPark
7
77 kgSaleh
9
58 kgNakajima
10
64 kgChawchiangkwang
15
64 kgDyudya
16
80 kgShushemoin
18
62 kgMohd Zariff
19
63 kgKim
20
70 kgTrịnh
21
70 kgPark
22
73 kgSirironnachai
25
61 kgde Jonge
26
65 kgFelipe
30
58 kgBizhigitov
32
76 kgNieto
42
58 kgWhitehouse
43
58 kg
Weight (KG) →
Result →
80
58
2
43
# | Rider | Weight (KG) |
---|---|---|
2 | SALEH Mohd Harrif | 70 |
6 | HILL Benjamin | 67 |
7 | PARK Sang-Hoon | 77 |
9 | SALEH Mohd Zamri | 58 |
10 | NAKAJIMA Yasuharu | 64 |
15 | CHAWCHIANGKWANG Peerapol | 64 |
16 | DYUDYA Volodymyr | 80 |
18 | SHUSHEMOIN Alexandr | 62 |
19 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
20 | KIM Ok Cheol | 70 |
21 | TRỊNH Đức Tâm | 70 |
22 | PARK Sung Baek | 73 |
25 | SIRIRONNACHAI Sarawut | 61 |
26 | DE JONGE Maarten | 65 |
30 | FELIPE Marcelo | 58 |
32 | BIZHIGITOV Zhandos | 76 |
42 | NIETO Edgar | 58 |
43 | WHITEHOUSE Daniel | 58 |