Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Banaszek
1
75 kgKreder
2
70 kgCarstensen
3
69 kgMonk
5
67 kgBogusławski
6
77 kgLakasek
7
71 kgSaleh
8
70 kgTzortzakis
9
80 kgMohd Zariff
13
63 kgFelipe
16
58 kgSirironnachai
17
61 kgPahlke
18
71 kgBogdanovičs
19
68 kgPawlak
22
81 kgAhmad
28
66 kgBoonratanathanakorn
31
72 kgBanaszek
32
75 kg
1
75 kgKreder
2
70 kgCarstensen
3
69 kgMonk
5
67 kgBogusławski
6
77 kgLakasek
7
71 kgSaleh
8
70 kgTzortzakis
9
80 kgMohd Zariff
13
63 kgFelipe
16
58 kgSirironnachai
17
61 kgPahlke
18
71 kgBogdanovičs
19
68 kgPawlak
22
81 kgAhmad
28
66 kgBoonratanathanakorn
31
72 kgBanaszek
32
75 kg
Weight (KG) →
Result →
81
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | BANASZEK Alan | 75 |
2 | KREDER Raymond | 70 |
3 | CARSTENSEN Lucas | 69 |
5 | MONK Cyrus | 67 |
6 | BOGUSŁAWSKI Marceli | 77 |
7 | LAKASEK Irwandie | 71 |
8 | SALEH Mohd Harrif | 70 |
9 | TZORTZAKIS Polychronis | 80 |
13 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
16 | FELIPE Marcelo | 58 |
17 | SIRIRONNACHAI Sarawut | 61 |
18 | PAHLKE Jasper Levi | 71 |
19 | BOGDANOVIČS Māris | 68 |
22 | PAWLAK Tobiasz | 81 |
28 | AHMAD Muhammad Ameer | 66 |
31 | BOONRATANATHANAKORN Turakit | 72 |
32 | BANASZEK Norbert | 75 |