Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 23
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Carstensen
1
69 kgvan Engelen
2
51 kgChaiyasombat
3
58 kgSirironnachai
5
61 kgSexton
6
71 kgCahyadi
9
52 kgDe Rossi
10
70 kgLakasek
11
71 kgChawchiangkwang
14
64 kgBudyak
22
53 kgSu
23
64 kgKergozou De La Boessiere
24
74 kgClark
28
68 kgOthman
33
57 kgTzortzakis
50
80 kg
1
69 kgvan Engelen
2
51 kgChaiyasombat
3
58 kgSirironnachai
5
61 kgSexton
6
71 kgCahyadi
9
52 kgDe Rossi
10
70 kgLakasek
11
71 kgChawchiangkwang
14
64 kgBudyak
22
53 kgSu
23
64 kgKergozou De La Boessiere
24
74 kgClark
28
68 kgOthman
33
57 kgTzortzakis
50
80 kg
Weight (KG) →
Result →
80
51
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | CARSTENSEN Lucas | 69 |
2 | VAN ENGELEN Adne | 51 |
3 | CHAIYASOMBAT Thanakhan | 58 |
5 | SIRIRONNACHAI Sarawut | 61 |
6 | SEXTON Tom | 71 |
9 | CAHYADI Aiman | 52 |
10 | DE ROSSI Lucas | 70 |
11 | LAKASEK Irwandie | 71 |
14 | CHAWCHIANGKWANG Peerapol | 64 |
22 | BUDYAK Anatoliy | 53 |
23 | SU Haoyu | 64 |
24 | KERGOZOU DE LA BOESSIERE Nick | 74 |
28 | CLARK Boris | 68 |
33 | OTHMAN Muhamad Afiq Husaine | 57 |
50 | TZORTZAKIS Polychronis | 80 |